
100 doors
There are 100 doors in a row that are all initially closed.

You make 100 passes by the doors.

The first time through, visit every door and toggle the door
 (if the door is closed, open it; if it is open, close it).

The second time, only visit every 2nd door (door #2, #4,
#6, ...), and toggle it.

The third time, visit every 3rd door (door #3, #6, #9, ...),

etc, until you only visit the 100th door.

Task

Answer the question: what state are the doors in after the last
pass? Which are open, which are closed?

Alternate: As noted in this page's discussion page, the only
doors that remain open are those whose numbers are perfect
squares.

Opening only those doors is an optimization that may also be
expressed; however, as should be obvious, this defeats the intent
of comparing implementations across programming languages.

Unoptimized
doors: array/initial 100 'closed
repeat i 100 [
 door: at doors i
 forskip door i [change door either 'open = first door ['closed] ['open]]
]

Optimized
doors: array/initial 100 'closed
repeat i 10 [doors/(i * i): 'open]

https://rosettacode.org/wiki/Rosetta_Code:Optimization
https://rosettacode.org/wiki/Talk:100_doors
https://rosettacode.org/wiki/Rosetta_Code:Extra_credit
https://rosettacode.org/wiki/Rosetta_Code:Multiple_passes

Red

Unoptimized
doors: make vector! [char! 8 100]
repeat i 100 [change at doors i #"."]

repeat i 100 [
 j: i
 while [j <= 100] [
 door: at doors j
 change door either #"O" = first door [#"."] [#"O"]
 j: j + i
]
]

repeat i 10 [
 print copy/part at doors (i - 1 * 10 + 1) 10
]

99 Bottles of Beer
Display the complete lyrics for the song: 99 Bottles of Beer
on the Wall.

The lyrics follow this form:

99 bottles of beer on the wall
99 bottles of beer
Take one down, pass it around
98 bottles of beer on the wall

98 bottles of beer on the wall
98 bottles of beer
Take one down, pass it around
97 bottles of beer on the wall

... and so on, until reaching 0.

Grammatical support for "1 bottle of beer" is optional.

As with any puzzle, try to do it in as creative/concise/comical a
way as possible (simple, obvious solutions allowed, too).

; The 'bottles' function maintains correct grammar.

https://rosettacode.org/wiki/Category:Red

bottles: func [n /local b][
 b: either 1 = n ["bottle"]["bottles"]
 if 0 = n [n: "no"]
 reform [n b]
]

for n 99 1 -1 [print [
 bottles n "of beer on the wall" crlf
 bottles n "of beer" crlf
 "Take one down, pass it around" crlf
 bottles n - 1 "of beer on the wall" crlf
]]

Output (selected highlights):

99 bottles of beer on the wall 2 bottles of beer on the wall
99 bottles of beer 2 bottles of beer
Take one down, pass it around Take one down, pass it around
98 bottles of beer on the wall 1 bottle of beer on the wall

...Continues... 1 bottle of beer on the wall
 1 bottle of beer
 Take one down, pass it around
 no bottles of beer on the wall

This one prints with proper grammar. "Bottles" changed to
"bottle" at the end of the 2 line, and throughout the 1 line. 0
changed to "No" in the last line:

for i 99 1 -1 [
 x: rejoin [
 i b: " bottles of beer" o: " on the wall. " i b
 ". Take one down, pass it around. " (i - 1) b o "^/"
]
 r: :replace j: "bottles" k: "bottle"
 switch i [1 [r x j k r at x 10 j k r x "0" "No"] 2 [r at x 40 j k]]
 print x
] halt

Here's a simple 1 line console version:

for i 99 1 -1[print rejoin[i b:" bottles of beer"o:" on the wall. "i b". Take
one down, pass it around. "(i - 1)b o"^/"]]

Red

; The 'bottles' function maintains correct grammar.

https://rosettacode.org/wiki/Category:Red

bottles: function [n] [
 b: either 1 = n ["bottle"]["bottles"]
 if 0 = n [n: "no"]
 form reduce [n b]
]

repeat x 99 [
 n: 100 - x
 print [
 bottles n "of beer on the wall" crlf
 bottles n "of beer" crlf
 "Take one down, pass it around" crlf
 bottles n - 1 "of beer on the wall" crlf
]]

A+B
A+B ─── a classic problem in programming contests, it's
given so contestants can gain familiarity with the online judging
system being used.

Given two integers, A and B.

Their sum needs to be calculated.

Input data

Two integers are written in the input stream, separated by
space(s):

(− 1000 ≤ A , B ≤ + 1000)

Output data

The required output is one integer: the sum of A and B.

forever [x: load input print x/1 + x/2]

Output:

1 2
3
2 2
4
3 2
5

Red
x: load input print x/1 + x/2

Output:

1 2
3
2 2
4
3 2
5

Alternative implementations:

print (first x: load input) + x/2

print head insert load input 'add

print load replace input " " " + "

Abstract type
Abstract type is a type without instances or without definition.

For example in object-oriented programming using some languages,
abstract types can be partial implementations of other types,
which are to be derived there-from. An abstract type may provide
implementation of some operations and/or components. Abstract
types without any implementation are called interfaces. In the
languages that do not support multiple inheritance (Ada, Java),
classes can, nonetheless, inherit from multiple interfaces. The
languages with multiple inheritance (like C++) usually make no
distinction between partially implementable abstract types and
interfaces. Because the abstract type's implementation is
incomplete, OO languages normally prevent instantiation from them
(instantiation must derived from one of their descendant
classes).

The term abstract datatype also may denote a type, with an
implementation provided by the programmer rather than directly by
the language (a built-in or an inferred type). Here the word

https://rosettacode.org/wiki/Object-oriented_programming
https://rosettacode.org/wiki/C%2B%2B
https://rosettacode.org/wiki/Java
https://rosettacode.org/wiki/Ada
https://rosettacode.org/wiki/Inheritance
https://rosettacode.org/wiki/Object-oriented_programming
https://rosettacode.org/wiki/Category:Red

abstract means that the implementation is abstracted away,
irrelevant for the user of the type. Such implementation can and
should be hidden if the language supports separation of
implementation and specification. This hides complexity while
allowing the implementation to change without repercussions on
the usage. The corresponding software design practice is said to
follow the information hiding principle.

It is important not to confuse this abstractness (of
implementation) with one of the abstract type. The latter is
abstract in the sense that the set of its values is empty. In the
sense of implementation abstracted away, all user-defined types
are abstract.

In some languages, like for example in Objective Caml which is
strongly statically typed, it is also possible to have abstract
types that are not OO related and are not an abstractness too.
These are pure abstract types without any definition even in the
implementation and can be used for example for the type algebra,
or for some consistence of the type inference. For example in
this area, an abstract type can be used as a phantom type to
augment another type as its parameter.

Task: show how an abstract type can be declared in the language.
If the language makes a distinction between interfaces and
partially implemented types illustrate both.

; The "shape" class is an abstract class -- it defines the "pen"
; property and "line" method, but "size" and "draw" are undefined and
; unimplemented.

shape: make object! [
 pen: "X"
 size: none

 line: func [count][loop count [prin self/pen] prin crlf]
 draw: does [none]
]

; The "box" class inherits from "shape" and provides the missing
; information for drawing boxes.

http://en.wikipedia.org/wiki/Information_hiding

box: make shape [
 size: 10
 draw: does [loop self/size [line self/size]]
]

; "rectangle" also inherits from "shape", but handles the
; implementation very differently.

rectangle: make shape [
 size: 20x10
 draw: does [loop self/size/y [line self/size/x]]
]

; Unlike some languages discussed, REBOL has absolutely no qualms
; about instantiating an "abstract" class -- that's how I created the
; derived classes of "rectangle" and "box", after all.

s: make shape [] s/draw ; Nothing happens.

print "A box:"
b: make box [pen: "O" size: 5] b/draw

print [crlf "A rectangle:"]
r: make rectangle [size: 32x5] r/draw

Red

; The "shape" class is an abstract class -- it defines the "pen"
; property and "line" method, but "size" and "draw" are undefined and
; unimplemented.

shape: make object! [
 pen: "X"
 size: none

 line: func [count][loop count [prin self/pen] prin newline]
 draw: does [none]
]

; The "box" class inherits from "shape" and provides the missing
; information for drawing boxes.

box: make shape [
 size: 10
 draw: does [loop self/size [line self/size]]
]

; "rectangle" also inherits from "shape", but handles the
; implementation very differently.

https://rosettacode.org/wiki/Category:Red

rectangle: make shape [
 size: 20x10
 draw: does [loop self/size/y [line self/size/x]]
]

; Unlike some languages discussed, REBOL has absolutely no qualms
; about instantiating an "abstract" class -- that's how I created the
; derived classes of "rectangle" and "box", after all.

print "An abstract shape (nothing):"
s: make shape [] s/draw ; Nothing happens.

print [newline "A box:"]
b: make box [pen: "O" size: 5] b/draw

print [newline "A rectangle:"]
r: make rectangle [size: 32x5] r/draw

Accumulator factory
A problem posed by Paul Graham is that of creating a function
that takes a single (numeric) argument and which returns another
function that is an accumulator. The returned accumulator
function in turn also takes a single numeric argument, and
returns the sum of all the numeric values passed in so far to
that accumulator (including the initial value passed when the
accumulator was created).

Rules

The detailed rules are at http://paulgraham.com/accgensub.html
and are reproduced here for simplicity (with additions in small
italic text).

Before you submit an example, make sure the function

1.Takes a number n and returns a function (lets call it
g), that takes a number i, and returns n incremented by
the accumulation of i from every call of function g(i).
Although these exact function and parameter names need not be used

2.Works for any numeric type-- i.e. can take both ints
and floats and returns functions that can take both
ints and floats. (It is not enough simply to convert
all input to floats. An accumulator that has only seen

http://paulgraham.com/accgensub.html
http://en.wikipedia.org/wiki/Paul_Graham

integers must return integers.) (i.e., if the language
doesn't allow for numeric polymorphism, you have to use
overloading or something like that)

3.Generates functions that return the sum of every number
ever passed to them, not just the most recent. (This
requires a piece of state to hold the accumulated value, which in
turn means that pure functional languages can't be used for this
task.)

4.Returns a real function, meaning something that you can
use wherever you could use a function you had defined
in the ordinary way in the text of your program. (Follow
your language's conventions here.)

5.Doesn't store the accumulated value or the returned
functions in a way that could cause them to be
inadvertently modified by other code. (No global variables
or other such things.)

E.g. if after the example, you added the following code (in
a made-up language) where the factory function is called foo:

x = foo(1);
x(5);
foo(3);
print x(2.3);

It should print 8.3. (There is no need to print the form of the
accumulator function returned by foo(3); it's not part of the task at
all.)

Create a function that implements the described rules.

It need not handle any special error cases not described above.
The simplest way to implement the task as described is typically
to use a closure, providing the language supports them.

Where it is not possible to hold exactly to the constraints
above, describe the deviations.

make-acc-gen: func [start-val] [
 use [state] [
 state: start-val
 func [value] [
 state: state + value
]
]
]

https://rosettacode.org/wiki/Closures

Output:

>> x: make-acc-gen 1
>> x 5
== 6
>> make-acc-gen 3
>> print x 2.3
8.3

Ackermann function
The Ackermann function is a classic example of a recursive
function, notable especially because it is not a primitive
recursive function. It grows very quickly in value, as does the
size of its call tree.

The Ackermann function is usually defined as follows:

A (m , n) =
n + 1 if m = 0
A (m − 1 , 1) if m > 0 and n = 0
A (m − 1 , A (m , n − 1)) if m > 0 and n > 0.

Its arguments are never negative and it always terminates. Write
a function which returns the value of A (m , n). Arbitrary
precision is preferred (since the function grows so quickly), but
not required.

See also

• Conway chained arrow notation for the Ackermann function.

ackermann: func [m n] [
 case [
 m = 0 [n + 1]
 n = 0 [ackermann m - 1 1]
 true [ackermann m - 1 ackermann m n - 1]
]
]

http://en.wikipedia.org/wiki/Conway_chained_arrow_notation#Ackermann_function
http://en.wikipedia.org/wiki/Primitive_recursive_function
http://en.wikipedia.org/wiki/Primitive_recursive_function
http://en.wikipedia.org/wiki/Ackermann_function

Add a variable to a class
instance at runtime
Demonstrate how to dynamically add variables to an object (a
class instance) at runtime.

This is useful when the methods/variables of an instance are
based on a data file that isn't available until runtime. Hal
Fulton gives an example of creating an OO CSV parser at An
Exercise in Metaprogramming with Ruby. This is referred to as
"monkeypatching" by Pythonistas and some others.

; As I understand it, a REBOL object can only ever have whatever
; properties it was born with. However, this is somewhat offset by the
; fact that every instance can serve as a prototype for a new object
; that also has the new parameter you want to add.

; Here I create an empty instance of the base object (x), then add the
; new instance variable while creating a new object prototyped from
; x. I assign the new object to x, et voila', a dynamically added
; variable.

x: make object! [] ; Empty object.

x: make x [newvar: "forty-two" ; New property.]

print "Empty object modifed with 'newvar' property:"
probe x

; A slightly more interesting example:

starfighter: make object! [
 model: "unknown"
 pilot: none
]
x-wing: make starfighter [
 model: "Incom T-65 X-wing"
]

squadron: reduce [
 make x-wing [pilot: "Luke Skywalker"]
 make x-wing [pilot: "Wedge Antilles"]
 make starfighter [
 model: "Slayn & Korpil B-wing"
 pilot: "General Salm"
]
]

http://www.devsource.com/article2/0,1759,1928562,00.asp
http://www.devsource.com/article2/0,1759,1928562,00.asp

; Adding new property here.
squadron/1: make squadron/1 [deathstar-removal-expert: yes]

print [crlf "Fighter squadron:"]
foreach pilot squadron [probe pilot]

Red
person: make object! [
 name: none
 age: none
]

people: reduce [make person [name: "fred" age: 20] make person [name: "paul"
age: 21]]
people/1: make people/1 [skill: "fishing"]

foreach person people [
 print reduce [person/age "year old" person/name "is good at" any [select
person 'skill "nothing"]]
]

Align columns
Given a text file of many lines, where fields within a line are
delineated by a single 'dollar' character, write a program that
aligns each column of fields by ensuring that words in each
column are separated by at least one space. Further, allow for
each word in a column to be either left justified, right
justified, or center justified within its column.

Use the following text to test your programs:

Givenatext$file$of$many$lines,$where$fields$within$a$line$
are$delineated$byasingle$'dollar'$character,$write$a$program
that$aligns$each$column$of$fields$by$ensuring$that$words$in$each$
columnareseparatedbyat$least$one$space.
Further,$allow$for$each$wordina$column$tobeeither$left$
justified,$right$justified,orcenter$justified$withinitscolumn.

Note that:

https://rosettacode.org/wiki/Category:Red

1.The example input texts lines may, or may not, have
trailing dollar characters.

2.All columns should share the same alignment.
3.Consecutive space characters produced adjacent to the end

of lines are insignificant for the purposes of the task.
4.Output text will be viewed in a mono-spaced font on a plain

text editor or basic terminal.
5.The minimum space between columns should be computed from

the text and not hard-coded.
6.It is not a requirement to add separating characters

between or around columns.

specimen: {Givenatext$file$of$many$lines,$where$fields$within$a$line$
are$delineated$byasingle$'dollar'$character,$write$a$program
that$aligns$each$column$of$fields$by$ensuring$that$words$in$each$
columnareseparatedbyat$least$one$space.
Further,$allow$for$each$wordina$column$tobeeither$left$
justified,$right$justified,orcenter$justified$withinitscolumn.}

; Parse specimen into data grid.

data: copy []
foreach line parse specimen to-string lf [; Break into lines.
 append/only data parse line "$" ; Break into columns.
]

; Compute independent widths for each column.

widths: copy [] insert/dup widths 0 length? data/1
foreach line data [
 forall line [
 i: index? line
 widths/:i: max widths/:i length? Line/1]
]

pad: func [n /local x][x: copy "" insert/dup x " " n x]

; These formatting functions are passed as arguments to entable.

right: func [n s][rejoin [pad n - length? s s]]

left: func [n s][rejoin [s pad n - length? s]]

centre: func [n s /local h][
 h: round/down (n - length? s) / 2
 rejoin [pad h s pad n - h - length? s]
]

; Display data as table.

entable: func [data format] [
 foreach line data [
 forall line [
 prin rejoin [format pick widths index? line line/1
" "]
]
 print ""
]
]

; Format data table.

foreach i [left centre right] [
 print ["^/Align" i "...^/"] entable data get i]

Output:

Align left ...

Given a text file of many lines, where
fields within a line
are delineated by a single 'dollar' character, write a
program
that aligns each column of fields by ensuring
that words in each
column are separated by at least one space.
Further, allow for each word in a column
to be either left
justified, right justified, or center justified within its
column.

Align centre ...

 Given a text file of many lines, where
fields within a line
 are delineated by a single 'dollar' character, write
a program
 that aligns each column of fields by ensuring
that words in each
 column are separated by at least one space.
 Further, allow for each word in a column
to be either left
justified, right justified, or center justified within its
column.

Align right ...

 Given a text file of many lines, where
fields within a line
 are delineated by a single 'dollar' character, write
a program
 that aligns each column of fields by ensuring
that words in each
 column are separated by at least one space.
 Further, allow for each word in a column
to be either left
justified, right justified, or center justified within its
column.

Red

text: {Givenatext$file$of$many$lines,$where$fields$within$a$line$
are$delineated$byasingle$'dollar'$character,$write$a$program
that$aligns$each$column$of$fields$by$ensuring$that$words$in$each$
columnareseparatedbyat$least$one$space.
Further,$allow$for$each$wordina$column$tobeeither$left$
justified,$right$justified,orcenter$justified$withinitscolumn.}

; Parse specimen into data grid.

data: copy []
foreach line split text lf [append/only data split line "$"]

; Compute independent widths for each column.

widths: copy []
foreach line data [
 forall line [
 i: index? line
 if i > length? widths [append widths 0]
 widths/:i: max widths/:i length? line/1
]
]

pad: function [n] [x: copy "" insert/dup x " " n x]

; These formatting functions are passed as arguments to entable.

right: func [n s][rejoin [pad n - length? s s]]

left: func [n s][rejoin [s pad n - length? s]]

centre: function [n s] [
 d: n - length? s
 h: round/down d / 2
 rejoin [pad h s pad d - h]
]

https://rosettacode.org/wiki/Category:Red

; Display data as table.

entable: func [data format] [
 foreach line data [
 forall line [
 prin rejoin [format pick widths index? line line/1 " "]
]
 print ""
]
]

; Format data table.

foreach i [left centre right] [
 print [newline "Align" i "..." newline] entable data get i]

Anonymous recursion
While implementing a recursive function, it often happens that we
must resort to a separate helper function to handle the
actual recursion.

This is usually the case when directly calling the current
function would waste too many resources (stack space, execution
time), causing unwanted side-effects, and/or the function
doesn't have the right arguments and/or return values.

So we end up inventing some silly name like foo2 or
foo_helper. I have always found it painful to come up with a
proper name, and see some disadvantages:

• You have to think up a name, which then pollutes
the namespace

• Function is created which is called from nowhere
else

• The program flow in the source code is
interrupted

Some languages allow you to embed recursion directly in-
place. This might work via a label, a local gosub
instruction, or some special keyword.

Anonymous recursion can also be accomplished using the Y
combinator.

If possible, demonstrate this by writing the recursive version of
the fibonacci function (see Fibonacci sequence) which checks
for a negative argument before doing the actual recursion.

fib: func [n /f][do f: func [m] [either m < 2 [m][(f m - 1) + f m - 2]] n]

Apply a callback to an array
Take a combined set of elements and apply a function to each
element.

map: func [
 "Apply a function across an array."
 f [native! function!] "Function to apply to each element of array."
 a [block!] "Array to process."
 /local x
][x: copy [] forall a [append x do [f a/1]] x]

square: func [x][x * x]

; Tests:

assert: func [code][print [either do code [" ok"]["FAIL"] mold code]]

print "Simple loop, modify in place:"
assert [[1 100 81] = (a: [1 10 9] forall a [a/1: square a/1] a)]

print [crlf "Functional style with 'map':"]
assert [[4 16 36] = map :square [2 4 6]]

print [crlf "Applying native function with 'map':"]
assert [[2 4 6] = map :square-root [4 16 36]]

Output:

Simple loop, modify in place:
 ok [[1 100 81] = (a: [1 100 81] forall a [a/1: square a/1] a)]

Functional style with 'map':
 ok [[4 16 36] = map :square [2 4 6]]

Applying native function with 'map':
 ok [[2 4 6] = map :square-root [4 16 36]]

https://rosettacode.org/wiki/Fibonacci_sequence
https://rosettacode.org/wiki/Y_combinator
https://rosettacode.org/wiki/Y_combinator

Arithmetic/Integer
Get two integers from the user, and then (for those two
integers), display their:

• sum
• difference
• product
• integer quotient
• remainder
• exponentiation (if the operator

exists)

Don't include error handling.

For quotient, indicate how it rounds (e.g. towards zero,
towards negative infinity, etc.).

For remainder, indicate whether its sign matches the sign of the
first operand or of the second operand, if they are different.

x: to-integer ask "Please type in an integer, and press [enter]: "
y: to-integer ask "Please enter another integer: "
print ""

print ["Sum:" x + y]
print ["Difference:" x - y]
print ["Product:" x * y]

print ["Integer quotient (coercion) :" to-integer
x / y]
print ["Integer quotient (away from zero) :" round x / y]
print ["Integer quotient (halves round towards even digits) :" round/even
x / y]
print ["Integer quotient (halves round towards zero) :" round/half-
down x / y]
print ["Integer quotient (round in negative direction) :" round/floor x
/ y]
print ["Integer quotient (round in positive direction) :" round/ceiling
x / y]
print ["Integer quotient (halves round in positive direction):" round/half-
ceiling x / y]

print ["Remainder:" r: x // y]

; REBOL evaluates infix expressions from left to right. There are no
; precedence rules -- whatever is first gets evaluated. Therefore when
; performing this comparison, I put parens around the first term

; ("sign? a") of the expression so that the value of /a/ isn't
; compared to the sign of /b/. To make up for it, notice that I don't
; have to use a specific return keyword. The final value in the
; function is returned automatically.

match?: func [a b][(sign? a) = sign? b]

result: copy []
if match? r x [append result "first"]
if match? r y [append result "second"]

; You can evaluate arbitrary expressions in the middle of a print, so
; I use a "switch" to provide a more readable result based on the
; length of the /results/ list.

print [
 "Remainder sign matches:"
 switch length? result [
 0 ["neither"]
 1 [result/1]
 2 ["both"]
]
]

print ["Exponentiation:" x ** y]

Output:

Please type in an integer, and press [enter]: 17
Please enter another integer: -4

Sum: 13
Difference: 21
Product: -68
Integer quotient (coercion) : -4
Integer quotient (away from zero) : -4
Integer quotient (halves round towards even digits) : -4
Integer quotient (halves round towards zero) : -4
Integer quotient (round in negative direction) : -5
Integer quotient (round in positive direction) : -4
Integer quotient (halves round in positive direction): -4
Remainder: 1
Remainder sign matches: first
Exponentiation: 1.19730367213036E-5

Array concatenation
Show how to concatenate two arrays in your language.
If this is as simple as array1 + array2, so be it.

a1: [1 2 3]
a2: [4 5 6]
a3: [7 8 9]

append a1 a2 ; -> [1 2 3 4 5 6]

append/only a1 a3 ; -> [1 2 3 4 5 6 [7 8 9]]

Red
>> arr1: ["a" "b" "c"]
>> arr2: ["d" "e" "f"]
>> append arr1 arr2
== ["a" "b" "c" "d" "e" "f"]
>> arr3: [1 2 3]
>> insert arr1 arr3
>> arr1
== [1 2 3 "a" "b" "c" "d" "e" "f"]
>> arr4: [22 33 44]
== [22 33 44]
>> append/only arr1 arr4
== [1 2 3 "a" "b" "c" "d" "e" "f" [22 33 44]]

Arrays
This task is about arrays.

For hashes or associative arrays, please see Creating an
Associative Array.

For a definition and in-depth discussion of what an array is, see
Array.

Show basic array syntax in your language.

Basically, create an array, assign a value to it, and retrieve an
element (if available, show both fixed-length arrays and
dynamic arrays, pushing a value into it).

a: [] ; Empty.
b: ["foo"] ; Pre-initialized.

Inserting and appending.

https://rosettacode.org/wiki/Array
https://rosettacode.org/wiki/Creating_an_Associative_Array
https://rosettacode.org/wiki/Creating_an_Associative_Array
https://rosettacode.org/wiki/Category:Red

append a ["up" "down"] ; -> ["up" "down"]
insert a [left right] ; -> [left right "up" "down"]

Getting specific values.

first a ; -> left
third a ; -> "up"
last a ; -> "down"
a/2 ; -> right (Note: REBOL is 1-based.)

Getting subsequences. REBOL allows relative motion through a
block (list). The list variable returns the current position to
the end of the list, you can even assign to it without destroying
the list.

a ; -> [left right "up" "down"]
next a ; -> [right "up" "down"]
skip a 2 ; -> ["up" "down"]

a: next a ; -> [right "up" "down"]
head a ; -> [left right "up" "down"]

copy a ; -> [left right "up" "down"]
copy/part a 2 ; -> [left right]
copy/part skip a 2 2 ; -> ["up" "down"]

Red
arr1: [] ;create empty array
arr2: ["apple" "orange" 1 2 3] ;create an array with data
>> insert arr1 "blue"
>> arr1
== ["blue"]
append append arr1 "black" "green"
>> arr1
== ["blue" "black" "green"]
>> arr1/2
== "black"
>> second arr1
== "black"
>> pick arr1 2
== "black"

https://rosettacode.org/wiki/Category:Red

A vector! is a high-performance series! of items. The items in a
vector! must all have the same type. The allowable item types
are: integer! float! char! percent! Vectors of string! are not
allowed.

>> vec1: make vector! [20 30 70]
== make vector! [20 30 70]
>> vec1/2
== 30
>> second vec1
== 30
>> append vec1 90
== make vector! [20 30 70 90]
>> append vec1 "string"
*** Script Error: invalid argument: "string"
*** Where: append
*** Stack:
>> append vec1 3.0
*** Script Error: invalid argument: 3.0
*** Where: append
*** Stack:

Averages/Arithmetic mean
Write a program to find the mean (arithmetic average) of a
numeric vector.

In case of a zero-length input, since the mean of an empty set of
numbers is ill-defined, the program may choose to behave in any
way it deems appropriate, though if the programming language has
an established convention for conveying math errors or undefined
values, it's preferable to follow it.

average: func [v /local sum][
 if empty? v [return 0]
 sum: 0
 forall v [sum: sum + v/1]
 sum / length? v
]

; Note precision loss as spread increased.

print [mold x: [] "->" average x]
print [mold x: [3 1 4 1 5 9] "->" average x]
print [mold x: [1000 3 1 4 1 5 9 -1000] "->" average x]
print [mold x: [1e20 3 1 4 1 5 9 -1e20] "->" average x]

http://en.wikipedia.org/wiki/arithmetic_mean

Output:

[] -> 0
[3 1 4 1 5 9] -> 3.83333333333333
[1000 3 1 4 1 5 9 -1000] -> 2.875
[1E+20 3 1 4 1 5 9 -1E+20] -> 0.0

Averages/Median
Write a program to find the median value of a vector of
floating-point numbers.

The program need not handle the case where the vector is empty,
but must handle the case where there are an even number of
elements. In that case, return the average of the two middle
values.

There are several approaches to this. One is to sort the
elements, and then pick the element(s) in the middle.

Sorting would take at least O(n logn). Another approach
would be to build a priority queue from the elements, and then
extract half of the elements to get to the middle element(s).

This would also take O(n logn). The best solution is to use
the selection algorithm to find the median in O(n) time.

median: func [
 "Returns the midpoint value in a series of numbers; half the values are
above, half are below."
 block [any-block!]
 /local len mid
][
 if empty? block [return none]
 block: sort copy block
 len: length? block
 mid: to integer! len / 2
 either odd? len [
 pick block add 1 mid
][
 (block/:mid) + (pick block add 1 mid) / 2
]
]

http://en.wikipedia.org/wiki/Selection_algorithm
http://en.wikipedia.org/wiki/Median

Classes
In object-oriented programming class is a set (a transitive
closure) of types bound by the relation of inheritance. It is
said that all types derived from some base type T and the type T
itself form a class T.

The first type T from the class T sometimes is called the root
type of the class.

A class of types itself, as a type, has the values and operations
of its own. The operations of are usually called methods of the
root type. Both operations and values are called polymorphic.

A polymorphic operation (method) selects an implementation
depending on the actual specific type of the polymorphic
argument.

The action of choice the type-specific implementation of a
polymorphic operation is called dispatch. Correspondingly,
polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the
class are called multi-methods. A further generalization of is
the operation with arguments and/or results from different
classes.

• single-dispatch languages are those that allow only one
argument or result to control the dispatch. Usually it is
the first parameter, often hidden, so that a prefix
notation x.f() is used instead of mathematical f(x).

• multiple-dispatch languages allow many arguments and/or
results to control the dispatch.

A polymorphic value has a type tag indicating its specific type
from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a
[polymorphic] value. The type tag of the value is used in order
to resolve the dispatch. The set of polymorphic values of a class

https://rosettacode.org/wiki/Polymorphism
https://rosettacode.org/wiki/Inheritance
http://en.wikipedia.org/wiki/Transitive_closure
http://en.wikipedia.org/wiki/Transitive_closure
https://rosettacode.org/wiki/Object-oriented_programming

is a transitive closure of the sets of values of all types from
that class.

In many OO languages the type of the class of T and T itself are
considered equivalent. In some languages they are distinct (like
in Ada). When class T and T are equivalent, there is no way to
distinguish polymorphic and specific values.

Create a basic class with a method, a constructor, an instance
variable and how to instantiate it.

; Objects are derived from the base 'object!' type. REBOL uses a
; prototyping object system, so any object can be treated as a class,
; from which to derive others.

cowboy: make object! [
 name: "Tex" ; Instance variable.
 hi: does [; Method.
 print [self/name ": Howdy!"]]
]

; I create two instances of the 'cowboy' class.

tex: make cowboy []
roy: make cowboy [
 name: "Roy" ; Override 'name' property.
]

print "Say 'hello', boys:" tex/hi roy/hi
print ""

; Now I'll subclass 'cowboy'. Subclassing looks a lot like instantiation:

legend: make cowboy [
 deed: "..."
 boast: does [print [self/name ": I once" self/deed "!"]]]

; Instancing the legend:

pecos: make legend [name: "Pecos Bill" deed: "lassoed a twister"]

print "Howdy, Pecos!" pecos/hi
print "Tell us about yourself?" pecos/boast

Output:

Say 'hello', boys:
Tex : Howdy!
Roy : Howdy!

https://rosettacode.org/wiki/Ada
https://rosettacode.org/wiki/Object-oriented_programming

Howdy, Pecos!
Pecos Bill : Howdy!
Tell us about yourself?
Pecos Bill : I once lassoed a twister !

Comma quibbling
Comma quibbling is a task originally set by Eric Lippert in his
blog.

Write a function to generate a string output which is the
concatenation of input words from a list/sequence where:

1.An input of no words produces the output string of just the
two brace characters "{}".

2.An input of just one word, e.g. ["ABC"], produces the
output string of the word inside the two braces, e.g.
"{ABC}".

3.An input of two words, e.g. ["ABC", "DEF"], produces the
output string of the two words inside the two braces with
the words separated by the string " and ", e.g. "{ABC and
DEF}".

4.An input of three or more words, e.g. ["ABC", "DEF", "G",
"H"], produces the output string of all but the last word
separated by ", " with the last word separated by " and "
and all within braces; e.g. "{ABC, DEF, G and H}".

Test your function with the following series of inputs showing
your output here on this page:

• [] # (No input words).
• ["ABC"]
• ["ABC", "DEF"]
• ["ABC", "DEF", "G", "H"]

Note: Assume words are non-empty strings of uppercase characters
for this task.

http://blogs.msdn.com/b/ericlippert/archive/2009/04/15/comma-quibbling.aspx

Straightforward implementation

comma-quibbling: func [block] [
 rejoin [
 "^{"

 to-string use [s] [
 s: copy block
 s: next s
 forskip s 2 [insert s either tail? next s [" and "] [", "]]
 s: head s
]

 "^}"
]
]

foreach t [[] [ABC] [ABC DEF] [ABC DEF G H]] [print comma-quibbling t]

Output:

{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}

Alternative (more efficient) version with oxford comma
switch

; builds string instead of using an intermediate block

comma-quibbling: func [block /oxford /local s length] [
 length: length? block
 rejoin [
 "^{"

 either length < 2 [to-string block] [
 s: to-string block/1
 for n 2 (length - 1) 1 [repend s [", " pick block n]]
 if all [oxford (length > 2)] [append s ","]
 repend s [" and " last block]
]

 "^}"
]
]

test: [[] [ABC] [ABC DEF] [ABC DEF G H]]

foreach t test [print comma-quibbling t]
print "Now with Oxford comma"
foreach t test [print comma-quibbling/oxford t]

Output:

{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Now with Oxford comma
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G, and H}

Copy a string
This task is about copying a string.

Where it is relevant, distinguish between copying the contents of
a string versus making an additional reference to an existing
string.

x: y: "Testing."
y/2: #"X"
print ["Both variables reference same string:" mold x "," mold y]

x: "Slackeriffic!"
print ["Now reference different strings:" mold x "," mold y]

y: copy x ; String copy here!
y/3: #"X" ; Modify string.
print ["x copied to y, then modified:" mold x "," mold y]

y: copy/part x 7 ; Copy only the first part of y to x.
print ["Partial copy:" mold x "," mold y]

y: copy/part skip x 2 3
print ["Partial copy from offset:" mold x "," mold y]

Output:

Script: "String Copy" (16-Dec-2009)
Both variables reference same string: "TXsting." , "TXsting."
Now reference different strings: "Slackeriffic!" , "TXsting."
x copied to y, then modified: "Slackeriffic!" , "SlXckeriffic!"

Partial copy: "Slackeriffic!" , "Slacker"
Partial copy from offset: "Slackeriffic!" , "ack"

Red

originalString: "hello wordl"
copiedString: originalString
; OR
copiedString2: copy originalString

Date format
Display the current date in the formats of:

• 2007-11-23 and
• Sunday, November 23, 2007

; REBOL has no built-in pictured output.

zeropad: func [pad n][
 n: to-string n
 insert/dup n "0" (pad - length? n)
 n
]
d02: func [n][zeropad 2 n]

print now ; Native formatting.

print rejoin [now/year "-" d02 now/month "-" d02 now/day]

print rejoin [
 pick system/locale/days now/weekday ", "
 pick system/locale/months now/month " "
 now/day ", " now/year
]

Output:

6-Dec-2009/10:02:10-5:00
2009-12-06
Sunday, December 6, 2009

https://rosettacode.org/wiki/Category:Red

Date manipulation
Given the date string "March 7 2009 7:30pm EST",
output the time 12 hours later in any human-readable format.

As extra credit, display the resulting time in a time zone
different from your own.

; Only North American zones here -- feel free to extend for your area.

zones: [
 NST -3:30 NDT -2:30 AST -4:00 ADT -3:00 EST -5:00 EDT -4:00
 CST -6:00 CDT -5:00 MST -7:00 MDT -6:00 PST -8:00 PDT -7:00 AKST -9:00
 AKDT -8:00 HAST -10:00 HADT -9:00]

read-time: func [
 text
 /local m d y t z
][
 parse load text [
 set m word! (m: index? find system/locale/months to-string m)
 set d integer! set y integer!
 set t time! set tz word!]
 to-date reduce [y m d t zones/:tz]
]

print 12:00 + read-time "March 7 2009 7:30pm EST"

Output:

8-Mar-2009/7:30-5:00

Red

d: 07-Mar-2009/19:30 + 12:00
print d
8-Mar-2009/7:30:00
d/timezone: 1
print d
8-Mar-2009/8:30:00+01:00

https://rosettacode.org/wiki/Category:Red

Day of the week
A company decides that whenever Xmas falls on a Sunday they will
give their workers all extra paid holidays so that, together with
any public holidays, workers will not have to work the following
week (between the 25th of December and the first of January).

In what years between 2008 and 2121 will the 25th of December be
a Sunday?

Using any standard date handling libraries of your programming
language; compare the dates calculated with the output of other
languages to discover any anomalies in the handling of dates
which may be due to, for example, overflow in types used to
represent dates/times similar to y2k type problems.

for y 2008 2121 1 [
 d: to-date reduce [y 12 25]
 if 7 = d/weekday [prin [y ""]]
]

Output:

2011 2016 2022 2033 2039 2044 2050 2061 2067 2072 2078 2089 2095 2101 2107
2112 2118

Red
Red []
repeat yy 114 [
 d: to-date reduce [25 12 (2007 + yy)]
 if 7 = d/weekday [print d] ;; 7 = sunday
]
;; or
print "version 2"

d: to-date [25 12 2008]
while [d <= 25/12/2121] [
 if 7 = d/weekday [
 print rejoin [d/day '. d/month '. d/year]
]
 d/year: d/year + 1
]

https://rosettacode.org/wiki/Category:Red
http://en.wikipedia.org/wiki/Y2k#See_also

Output:

25-Dec-2011 25-Dec-2016 25-Dec-2022

Detect division by zero
Write a function to detect a divide by zero error without
checking if the denominator is zero.

; The 'try' word returns an error object if the operation fails for
; whatever reason. The 'error?' word detects an error object and
; 'disarm' keeps it from triggering so I can analyze it to print the
; appropriate message. Otherwise, any reference to the error object
; will stop the program.

div-check: func [
 "Attempt to divide two numbers, report result or errors as needed."
 x y
 /local result
] [
 either error? result: try [x / y][
 result: disarm result
 print ["Caught" result/type "error:" result/id]
] [
 print [x "/" y "=" result]
]
]

div-check 12 2 ; An ordinary calculation.
div-check 6 0 ; This will detect divide by zero.
div-check "7" 0.0001 ; Other errors can be caught as well.

Output:

12 / 2 = 6
Caught math error: zero-divide
Caught script error: cannot-use

Determine if a string is numeric
Create a boolean function which takes in a string and tells
whether it is a numeric string (floating point and negative
numbers included) in the syntax the language uses for numeric
literals or numbers converted from strings.

; Built-in.

numeric?: func [x][not error? try [to-decimal x]]

; Parse dialect for numbers.

sign: [0 1 "-"]
digit: charset "0123456789"
int: [some digit]
float: [int "." int]
number: [
 sign float ["e" | "E"] sign int |
 sign int ["e" | "E"] sign int |
 sign float |
 sign int]

pnumeric?: func [x][parse x number]

; Test cases.

cases: parse {
 10 -99
 10.43 -12.04
 1e99 1.0e10 -10e3 -9.12e7 2e-4 -3.4E-5
 3phase Garkenhammer e n3v3r phase3
} none
foreach x cases [print [x numeric? x pnumeric? x]]

Dot product
Create a function/use an in-built function, to compute the dot
product, also known as the scalar product of two vectors.

If possible, make the vectors of arbitrary length.

As an example, compute the dot product of the vectors:

 [1, 3, -5] and
 [4, -2, -1]

If implementing the dot product of two vectors directly:

• each vector must be the same length
• multiply corresponding terms from each vector
• sum the products (to produce the answer)

http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Dot_product

a: [1 3 -5]
b: [4 -2 -1]

dot-product: function [v1 v2] [sum] [
 if (length? v1) != (length? v2) [
 make error! "error: vector sizes must match"
]
 sum: 0
 repeat i length? v1 [
 sum: sum + ((pick v1 i) * (pick v2 i))
]
]

dot-product a b

Dynamic variable names
Create a variable with a user-defined name.

The variable name should not be written in the program text, but
should be taken from the user dynamically.

; Here, I ask the user for a name, then convert it to a word and
; assign the value "Hello!" to it. To read this phrase, realize that
; REBOL collects terms from right to left, so "Hello!" is stored for
; future use, then the prompt string "Variable name? " is used as the
; argument to ask (prompts user for input). The result of ask is
; converted to a word so it can be an identifier, then the 'set' word
; accepts the new word and the string ("Hello!") to be assigned.

set to-word ask "Variable name? " "Hello!"

Session output:

Variable name? glister
== "Hello!"
>> glister
== "Hello!"

Echo server
Create a network service that sits on TCP port 12321, which
accepts connections on that port, and which echoes complete lines
(using a carriage-return/line-feed sequence as line separator)
back to clients. No error handling is required. For the purposes

of testing, it is only necessary to support connections from
localhost (127.0.0.1 or perhaps ::1). Logging of connection
information to standard output is recommended.

The implementation must be able to handle simultaneous
connections from multiple clients. A multi-threaded or multi-
process solution may be used. Each connection must be able to
echo more than a single line.

The implementation must not stop responding to other clients if
one client sends a partial line or stops reading responses.

server-port: open/lines tcp://:12321
forever [
 connection-port: first server-port
 until [
 wait connection-port
 error? try [insert connection-port first connection-port]
]
 close connection-port
]
close server-port

Environment variables
Show how to get one of your process's environment variables.

The available variables vary by system; some of the common ones
available on Unix include:

• PATH
• HOME
• USER

print get-env "HOME"

Execute a system command
Run either the ls system command (dir on Windows), or
the pause system command.

; Capture output to string variable:

x: "" call/output "dir" x

http://en.wikipedia.org/wiki/Environment_variable

print x

; The 'console' refinement displays the command output on the REBOL command
line.

call/console "dir *.r"
call/console "ls *.r"

call/console "pause"

; The 'shell' refinement may be necessary to launch some programs.

call/shell "notepad.exe"

Red

call/show %pause ;The /show refinement forces the display of system's
shell window (Windows only).
call/show %dir
call/show %notepad.exe

Factorial
Definitions

• The factorial of 0 (zero) is defined as being
1 (unity).

• The Factorial Function of a positive integer,
n, is defined as the product of the sequence:

 n, n-1, n-2, ... 1

Write a function to return the factorial of a number.

Solutions can be iterative or recursive.

Support for trapping negative n errors is optional.

; Standard recursive implementation.

factorial: func [n][
 either n > 1 [n * factorial n - 1] [1]
]

; Iteration.

http://en.wikipedia.org/wiki/Factorial#Definition
https://rosettacode.org/wiki/Category:Red

ifactorial: func [n][
 f: 1
 for i 2 n 1 [f: f * i]
 f
]

; Automatic memoization.
; I'm just going to say up front that this is a stunt. However, you've
; got to admit it's pretty nifty. Note that the 'memo' function
; works with an unlimited number of arguments (although the expected
; gains decrease as the argument count increases).

memo: func [
 "Defines memoizing function -- keeps arguments/results for later use."
 args [block!] "Function arguments. Just specify variable names."
 body [block!] "The body block of the function."
 /local m-args m-r
][
 do compose/deep [
 func [
 (args)
 /dump "Dump memory."
][
 m-args: []
 if dump [return m-args]

 if m-r: select/only m-args reduce [(args)] [return m-
r]

 m-r: do [(body)]
 append m-args reduce [reduce [(args)] m-r]
 m-r
]
]
]

mfactorial: memo [n][
 either n > 1 [n * mfactorial n - 1] [1]
]

; Test them on numbers zero to ten.

for i 0 10 1 [print [i ":" factorial i ifactorial i mfactorial i]]

Output:

0 : 1 1 1
1 : 1 1 1
2 : 2 2 2
3 : 6 6 6
4 : 24 24 24
5 : 120 120 120

6 : 720 720 720
7 : 5040 5040 5040
8 : 40320 40320 40320
9 : 362880 362880 362880
10 : 3628800 3628800 3628800

Filter
Select certain elements from an Array into a new Array in a
generic way.
To demonstrate, select all even numbers from an Array.

As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.

a: [] repeat i 100 [append a i] ; Build and load array.

evens: [] repeat element a [if even? element [append evens element]]

print mold evens

Output:

[2 4 6 8 10 12 14 16 18 20 22 24
26 28 30 32 34 36 38 40 42 44 46 48 50
52 54 56 58 60 62 64 66 68 70 72 74 76
78 80 82 84 86 88 90 92 94 96 98 100]

Red
Red []
orig: [] repeat i 10 [append orig i]
?? orig
cpy: [] forall orig [if even? orig/1 [append cpy orig/1]]
;; or - because we know each second element is even :-)
;; cpy: extract next orig 2
?? cpy
remove-each ele orig [odd? ele] ;; destructive
?? orig

Output:

orig: [1 2 3 4 5 6 7 8 9 10]
cpy: [2 4 6 8 10]
orig: [2 4 6 8 10]

https://rosettacode.org/wiki/Category:Red

Find the last Sunday of each
month
Write a program or a script that returns the last Sundays of each
month of a given year. The year may be given through any simple
input method in your language (command line, std in, etc).

#!/usr/bin/env rebol

last-sundays-of-year: function [
 "Return series of last sunday (date!) for each month of the year"
 year [integer!] "which year?"
][
 d: to-date reduce [1 1 year] ; start with first day of year
 collect [
 repeat month 12 [
 d/month: month + 1 ; move to start of next month
 keep d - d/weekday ; calculate last sunday & keep
]
]
]

foreach sunday last-sundays-of-year to-integer system/script/args [print
sunday]

Output:

./last-sundays.reb 2013
27-Jan-2013
24-Feb-2013
31-Mar-2013
28-Apr-2013
26-May-2013
30-Jun-2013
28-Jul-2013
25-Aug-2013
29-Sep-2013
27-Oct-2013
24-Nov-2013
29-Dec-2013

First-class functions
A language has first-class functions if it can do each of the
following without recursively invoking a compiler or interpreter
or otherwise metaprogramming:

• Create new functions from preexisting functions at run-time
• Store functions in collections
• Use functions as arguments to other functions
• Use functions as return values of other functions

Write a program to create an ordered collection A of functions of
a real number. At least one function should be built-in and at
least one should be user-defined; try using the sine, cosine, and
cubing functions. Fill another collection B with the inverse of
each function in A. Implement function composition as in
Functional Composition. Finally, demonstrate that the result of
applying the composition of each function in A and its inverse in
B to a value, is the original value. (Within the limits of
computational accuracy).

(A solution need not actually call the collections "A" and "B".
These names are only used in the preceding paragraph for
clarity.)

This example is incomplete. Fails to demonstrate that the result
of applying the composition of each function in A and its
inverse in B to a value, is the original value Please ensure
that it meets all task requirements and remove this message.

; Functions "foo" and "bar" are used to prove that composition
; actually took place by attaching their signatures to the result.

foo: func [x][reform ["foo:" x]]
bar: func [x][reform ["bar:" x]]

cube: func [x][x * x * x]
croot: func [x][power x 1 / 3]

; "compose" means something else in REBOL, so I "fashion" an alternative.

fashion: func [f1 f2][
 do compose/deep [func [x][(:f1) (:f2) x]]]

https://rosettacode.org/wiki/Functional_Composition
https://rosettacode.org/wiki/Metaprogramming
http://en.wikipedia.org/wiki/First-class_function

A: [foo sine cosine cube]
B: [bar arcsine arccosine croot]

while [not tail? A][
 fn: fashion get A/1 get B/1
 source fn ; Prove that functions actually got composed.
 print [fn 0.5 crlf]

 A: next A B: next B ; Advance to next pair.
]

FizzBuzz
Write a program that prints the integers from 1 to 100
(inclusive).
But:

• for multiples of three, print Fizz (instead
of the number)

• for multiples of five, print Buzz (instead of
the number)

• for multiples of both three and five, print
FizzBuzz (instead of the number)

The FizzBuzz problem was presented as the lowest level of
comprehension required to illustrate adequacy.

; Concatenative. Note use of 'case/all' construct to evaluate all
; conditions. I use 'copy' to allocate a new string each time through
; the loop -- otherwise 'x' would get very long...

repeat i 100 [
 x: copy ""
 case/all [
 0 = mod i 3 [append x "Fizz"]
 0 = mod i 5 [append x "Buzz"]
 "" = x [x: mold i]]
 print x]

Here is an example by Nick Antonaccio.

repeat i 100 [
 print switch/default 0 compose [
 (mod i 15) ["fizzbuzz"]
 (mod i 3) ["fizz"]
 (mod i 5) ["buzz"]
][i]
]

And a minimized version:

repeat i 100[j:""if i // 3 = 0[j:"fizz"]if i // 5 = 0[j: join j"buzz"]if""=
j[j: i]print j]

The following is presented as a curiosity only, not as an example
of good coding practice:

m: func [i d] [0 = mod i d]
spick: func [t x y][either any [not t "" = t][y][x]]
zz: func [i] [rejoin [spick m i 3 "Fizz" "" spick m i 5 "Buzz" ""]]
repeat i 100 [print spick z: zz i z i]

Flatten a list
Write a function to flatten the nesting in an arbitrary list of
values.

Your program should work on the equivalent of this list:

 [[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]

Where the correct result would be the list:

 [1, 2, 3, 4, 5, 6, 7, 8]

flatten: func [
 "Flatten the block in place."
 block [any-block!]
][
 parse block [
 any [block: any-block! (change/part block first block 1) :block |
skip]
]
 head block
]

Sample:

>> flatten [[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []]
== [1 2 3 4 5 6 7 8]

Red

https://rosettacode.org/wiki/Category:Red
http://en.wikipedia.org/wiki/List_(computing)

flatten: function [
 "Flatten the block"
 block [any-block!]
][
 load form block
]

red>> flatten [[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []]
== [1 2 3 4 5 6 7 8]

;flatten a list to a string
>> blk: [1 2 ["test"] "a" [["bb"]] 3 4 [[[99]]]]
>> form blk
== "1 2 test a bb 3 4 99"

Flow-control structures
Document common flow-control structures.

One common example of a flow-control structure is the goto
construct.

Note that Conditional Structures and Loop Structures have
their own articles/categories.

; return -- Return early from function (normally, functions return
; result of last evaluation).

hatefive: func [
 "Prints value unless it's the number 5."
 value "Value to print."
][
 if value = 5 [return "I hate five!"]
 print value
]

print "Function hatefive, with various values:"
hatefive 99
hatefive 13
hatefive 5
hatefive 3

; break -- Break out of current loop.

print [crlf "Loop to 10, but break out at five:"]
repeat i 10 [
 if i = 5 [break]
 print i
]

https://rosettacode.org/wiki/Iteration
https://rosettacode.org/wiki/Conditional_Structures

; catch/throw -- throw breaks out of a code block to enclosing catch.

print [crlf "Start to print two lines, but throw out after the first:"]
catch [
 print "First"
 throw "I'm done!"
 print "Second"
]

; Using named catch blocks, you can select which catcher you want when
throwing.

print [crlf "Throw from inner code block, caught by outer:"]
catch/name [
 print "Outer catch block."
 catch/name [
 print "Inner catch block."
 throw/name "I'm done!" 'Johnson
 print "We never get here."
] 'Clemens
 print "We never get here, either."
] 'Johnson

; try

div: func [
 "Divide first number by second."
 a b
 /local r "Result"
][
 if error? try [r: a / b] [r: "Error!"]
 r ; Functions return last value evaluated.
]

print [crlf "Report error on bad division:"]
print div 10 4
print div 10 2
print div 10 1
print div 10 0

Formatted numeric output
Express a number in decimal as a fixed-length string with leading
zeros.

For example, the number 7.125 could be expressed as
00007.125

; REBOL has no built-in facilities for printing pictured output.
; However, it's not too hard to cook something up using the
; string manipulation facilities.

zeropad: func [
 "Pad number with zeros or spaces. Works on entire number."
 pad "Number of characters to pad to."
 n "Number to pad."
 /space "Pad with spaces instead."
 /local nn c s
][
 n: to-string n c: " " s: ""
 if not space [
 c: "0"
 if #"-" = n/1 [pad: pad - 1 n: copy skip n 1 s: "-"]
]

 insert/dup n c (pad - length? n)
 insert n s
 n
]

; These tests replicate the C example output.

print [zeropad/space 9 negate 7.125]
print [zeropad/space 9 7.125]
print 7.125
print [zeropad 9 negate 7.125]
print [zeropad 9 7.125]
print 7.125

Output:

 -7.125
 7.125
7.125
-0007.125
00007.125
7.125

FTP
Connect to a server, change directory, list its contents and
download a file as binary using the FTP protocol. Use passive
mode if available.

system/schemes/ftp/passive: on
print read ftp://kernel.org/pub/linux/kernel/
write/binary %README read/binary ftp://kernel.org/pub/linux/kernel/README

Function composition
Create a function, compose, whose two arguments f and g,
 are both functions with one argument.

The result of compose is to be a function of one argument, (lets
call the argument x), which works like applying function f
 to the result of applying function g to x.

Example

 compose(f, g) (x) = f(g(x))

Reference: Function composition

Hint: In some languages, implementing compose correctly requires
creating a closure.

; "compose" means something else in REBOL, therefore I use a 'compose-
functions name.

compose-functions: func [
 {compose the given functions F and G}
 f [any-function!]
 g [any-function!]
] [
 func [x] compose [(:f) (:g) x]
]

Functions "foo" and "bar" are used to prove that composition
actually took place by attaching their signatures to the result.

foo: func [x] [reform ["foo:" x]]
bar: func [x] [reform ["bar:" x]]

foo-bar: compose-functions :foo :bar
print ["Composition of foo and bar:" mold foo-bar "test"]

sin-asin: compose-functions :sine :arcsine
print [crlf "Composition of sine and arcsine:" sin-asin 0.5]

Output:

Composition of foo and bar: "foo: bar: test"

Composition of sine and arcsine: 0.5

http://en.wikipedia.org/wiki/Function_composition_(computer_science)
http://en.wikipedia.org/wiki/Closure_(computer_science)

Generic swap
Write a generic swap function or operator which exchanges the
values of two variables (or, more generally, any two storage
places that can be assigned), regardless of their types.

If your solution language is statically typed please describe the
way your language provides genericity.

If variables are typed in the given language, it is permissible
that the two variables be constrained to having a mutually
compatible type, such that each is permitted to hold the value
previously stored in the other without a type violation. That is
to say, solutions do not have to be capable of exchanging, say, a
string and integer value, if the underlying storage locations are
not attributed with types that permit such an exchange.

Generic swap is a task which brings together a few separate
issues in programming language semantics.

Dynamically typed languages deal with values in a generic way
quite readily, but do not necessarily make it easy to write a
function to destructively swap two variables, because this
requires indirection upon storage places or upon the syntax
designating storage places.

Functional languages, whether static or dynamic, do not
necessarily allow a destructive operation such as swapping two
variables regardless of their generic capabilities.

Some static languages have difficulties with generic programming
due to a lack of support for (Parametric Polymorphism).

swap: func [
 "Swap contents of variables."
 a [word!] b [word!] /local x
][
 x: get a
 set a get b
 set b x]

answer: 42 ship: "Heart of Gold"
swap 'answer 'ship ; Note quoted variables.
print rejoin ["The answer is " answer ", the ship is " ship "."]

https://rosettacode.org/wiki/Parametric_Polymorphism

Greatest common divisor
Find the greatest common divisor of two integers.

gcd: func [
 {Returns the greatest common divisor of m and n.}
 m [integer!]
 n [integer!]
 /local k
] [
 ; Euclid's algorithm
 while [n > 0] [
 k: m
 m: n
 n: k // m
]
 m
]

Greatest element of a list
Create a function that returns the maximum value in a provided
set of values,
where the number of values may not be known until run-time.

max: func [
 "Find maximum value in a list."
 values [series!] "List of values."
] [
 first maximum-of values
]

print ["Max of" mold d: [5 4 3 2 1] "is" max d]
print ["Max of" mold d: [-5 -4 -3 -2 -1] "is" max d]

Output:

Max of [5 4 3 2 1] is 5
Max of [-5 -4 -3 -2 -1] is -1

Red
Red []
list: [1 2 3 5 4]
print last sort list

https://rosettacode.org/wiki/Category:Red

Hailstone sequence
The Hailstone sequence of numbers can be generated from a
starting positive integer, n by:

• If n is 1 then the sequence ends.

• If n is even then the next n of the sequence

= n/2
• If n is odd then the next n of the sequence

= (3 * n) + 1

The (unproven) Collatz conjecture is that the hailstone sequence
for any starting number always terminates.

The hailstone sequence is also known as hailstone numbers
(because the values are usually subject to multiple descents and
ascents like hailstones in a cloud).

This sequence is also known as the Collatz sequence.

1.Create a routine to generate the hailstone sequence for a
number.

2. Use the routine to show that the hailstone sequence for the
number 27 has 112 elements starting with 27, 82, 41, 124
and ending with 8, 4, 2, 1

3.Show the number less than 100,000 which has the longest
hailstone sequence together with that sequence's length.
 (But don't show the actual sequence!)

hail: func [
 "Returns the hailstone sequence for n"
 n [integer!]
 /local seq
] [
 seq: copy reduce [n]
 while [n <> 1] [
 append seq n: either n % 2 == 0 [n / 2] [3 * n + 1]
]
 seq
]

http://en.wikipedia.org/wiki/Collatz_conjecture

hs27: hail 27
print [
 "the hail sequence of 27 has length" length? hs27
 "and has the form " copy/part hs27 3 "..."
 back back back tail hs27
]

maxN: maxLen: 0
repeat n 99999 [
 if (len: length? hail n) > maxLen [
 maxN: n
 maxLen: len
]
]

print [
 "the number less than 100000 with the longest hail sequence is"
 maxN "with length" maxLen
]

Output:

the hail sequence of 27 has length 112 and has the form 27 82 41 ... 4 2 1
the number less than 100000 with the longest hail sequence is 77031 with
length 351

Higher-order functions
Pass a function as an argument to another function.

map: func [
 "Apply function to contents of list, return new list."
 f [function!] "Function to apply to list."
 data [block! list!] "List to transform."
 /local result i
][
 result: copy [] repeat i data [append result f i] result]

square: func [
 "Calculate x^2."
 x [number!]
][x * x]

cube: func [
 "Calculate x^3."
 x [number!]
][x * x * x]

; Testing:

x: [1 2 3 4 5]
print ["Data: " mold x]
print ["Squared:" mold map :square x]
print ["Cubed: " mold map :cube x]
print ["Unnamed:" mold map func [i][i * 2 + 1] x]

Output:

Data: [1 2 3 4 5]
Squared: [1 4 9 16 25]
Cubed: [1 8 27 64 125]
Unnamed: [3 5 7 9 11]

Horner's rule for polynomial
evaluation
A fast scheme for evaluating a polynomial such as:

− 19 + 7 x − 4 x 2 + 6 x 3

when

x = 3.

is to arrange the computation as follows:

((((0) x + 6) x + (− 4)) x + 7) x + (− 19)

And compute the result from the innermost brackets outwards as in
this pseudocode:

coefficients := [-19, 7, -4, 6] # list coefficients of all x^0..x^n in order
x := 3
accumulator := 0
for i in length(coefficients) downto 1 do
 # Assumes 1-based indexing for arrays
 accumulator := (accumulator * x) + coefficients[i]
done
accumulator now has the answer

Task Description

Create a routine that takes a list of coefficients of a
polynomial in order of increasing powers of x; together with
a value of x to compute its value at, and return the value
of the polynomial at that value using Horner's rule.

http://www.physics.utah.edu/~detar/lessons/c++/array/node1.html

horner: func [coeffs x] [
 result: 0
 foreach i reverse coeffs [result: (result * x) + i]
 return result
]

print horner [-19 7 -4 6] 3

Increment a numerical string
Increment a numerical string.

; Note the use of unusual characters in function name. Also note that
; because REBOL collects terms from right to left, I convert the
; string argument (s) to integer first, then add that result to one.

s++: func [s][to-string 1 + to-integer s]

; Examples. Because the 'print' word actually evaluates the block
; (it's effectively a 'reduce' that gets printed space separated),
; it's possible for me to assign the test string to 'x' and have it
; printed as a side effect. At the end, 'x' is available to submit to
; the 's++' function. I 'mold' the return value of s++ to make it
; obvious that it's still a string.

print [x: "-99" "plus one equals" mold s++ x]
print [x: "42" "plus one equals" mold s++ x]
print [x: "12345" "plus one equals" mold s++ x]

Output:

-99 plus one equals "-98"
42 plus one equals "43"
12345 plus one equals "12346"

Inheritance/Single
Inheritance is an operation of type algebra that creates a new
type from one or several parent types. The obtained type is
called derived type. It inherits some of the properties of its
parent types. Usually inherited properties are:

• methods
• components
• parts of the representation

https://rosettacode.org/wiki/Type_algebra

The class of the new type is a subclass of the classes rooted in
the parent types. When all (in certain sense) properties of the
parents are preserved by the derived type, it is said to be a
Liskov subtype. When properties are preserved then the derived
type is substitutable for its parents in all contexts. Usually
full substitutability is achievable only in some contexts.

Inheritance is

• single, when only one parent is allowed
• multiple, otherwise

Some single inheritance languages usually allow multiple
inheritance for certain abstract types, interfaces in particular.

Inheritance can be considered as a relation parent-child. Parent
types are sometimes called supertype, the derived ones are
subtype. This relation is transitive and reflexive. Types bound
by the relation form a wp:Directed_acyclic_graph directed acyclic
graph (ignoring reflexivity). With single inheritance it becomes
a tree.

Task: Show a tree of types which inherit from each other. The top
of the tree should be a class called Animal. The second level
should have Dog and Cat. Under Dog should be Lab and Collie. None
of the classes need to have any functions, the only thing they
need to do is inherit from the specified superclasses (overriding
functions should be shown in Polymorphism). The tree should look
like this:

 Animal
 /\
 / \
 / \
 Dog Cat
 /\
 / \
 / \
Lab Collie

https://rosettacode.org/wiki/Polymorphism
http://en.wikipedia.org/wiki/Tree_(graph_theory)
http://en.wikipedia.org/wiki/Directed_acyclic_graph_directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph_directed_acyclic_graph
http://en.wikipedia.org/wiki/Reflexive_relation
http://en.wikipedia.org/wiki/Transitive_relation
https://rosettacode.org/wiki/Abstract_type
https://rosettacode.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Liskov_substitution_principle
https://rosettacode.org/wiki/Classes

; REBOL provides subclassing through its prototype mechanism:

Animal: make object! [legs: 4]

Dog: make Animal [says: "Woof!"]
Cat: make Animal [says: "Meow..."]

Lab: make Dog []
Collie: make Dog []

; Demonstrate inherited properties:

print ["Cat has" Cat/legs "legs."]

print ["Lab says:" Lab/says]

Output:

Cat has 4 legs.
Lab says: Woof!

Input loop
Read from a text stream either word-by-word or line-by-line until
the stream runs out of data.

The stream will have an unknown amount of data on it.

; Slurp the whole file in:
x: read %file.txt

; Bring the file in by lines:
x: read/lines %file.txt

; Read in first 10 lines:
x: read/lines/part %file.txt 10

; Read data a line at a time:
f: open/lines %file.txt
while [not tail? f][
 print f/1
 f: next f ; Advance to next line.
]
close f

Interactive programming
Many language implementations come with an interactive mode.

This is a command-line interpreter that reads lines from the user
and evaluates these lines as statements or expressions.

An interactive mode may also be known as a command mode, a
read-eval-print loop (REPL), or a shell.

Show how to start this mode.

Then, as a small example of its use, interactively create a
function of two strings and a separator that returns the strings
separated by two concatenated instances of the separator (the

3rd argument).

Example

 f('Rosetta', 'Code', ':')

should return

 'Rosetta::Code'

Note

This task is not about creating your own interactive mode.

Start the REBOL/Core interpreter in quiet mode with -q. q to
quit.

$ rebol -q
>> f: func [a b s] [print rejoin [a s s b]]
>> f "Rosetta" "Code" ":"
Rosetta::Code
>> q

http://en.wikipedia.org/wiki/read-eval-print_loop
http://en.wikipedia.org/wiki/command-line_interpreter

Josephus problem
Josephus problem is a math puzzle with a grim description: n
prisoners are standing on a circle, sequentially numbered from 0
to n − 1.

An executioner walks along the circle, starting from prisoner 0,
removing every k-th prisoner and killing him.

As the process goes on, the circle becomes smaller and smaller,
until only one prisoner remains, who is then freed. >

For example, if there are n = 5 prisoners and k = 2, the order
the prisoners are killed in (let's call it the "killing
sequence") will be 1, 3, 0, and 4, and the survivor will be #2.

Task

Given any n , k > 0, find out which prisoner will be the
final survivor.

In one such incident, there were 41 prisoners and every 3rd

prisoner was being killed (k = 3).

Among them was a clever chap name Josephus who worked out the
problem, stood at the surviving position, and lived on to tell
the tale.

Which number was he?

Extra

The captors may be especially kind and let m survivors free,

and Josephus might just have m − 1 friends to save.

Provide a way to calculate which prisoner is at any given
position on the killing sequence.

Notes

http://en.wikipedia.org/wiki/Josephus_problem

1.You can always play the executioner and follow the
procedure exactly as described, walking around the circle,
counting (and cutting off) heads along the way. This would
yield the complete killing sequence and answer the above
questions, with a complexity of probably O (k n).
However, individually it takes no more than O (m) to find
out which prisoner is the m-th to die.

2.If it's more convenient, you can number prisoners from 1
to n instead. If you choose to do so, please state it
clearly.

3.An alternative description has the people committing
assisted suicide instead of being executed, and the last
person simply walks away. These details are not relevant,
at least not mathematically.

execute: func [death-list [block!] kill [integer!]] [
 assert [not empty? death-list]
 until [
 loop kill - 1 [append death-list take death-list]
 (1 == length? remove death-list)
]
]

prisoner: [] for n 0 40 1 [append prisoner n]
execute prisoner 3
print ["Prisoner" prisoner "survived"]

Output:

Prisoner 30 survived

And any kind of list will do:

for-the-chop: [Joe Jack William Averell Rantanplan]
execute for-the-chop 2
print [for-the-chop "survived"]

Output:

William survived

JSON
Load a JSON string into a data structure. Also, create a new data
structure and serialize it into JSON.

Use objects and arrays (as appropriate for your language) and
make sure your JSON is valid (https://jsonformatter.org,
https://codebeautify.org/jsonvalidator, https://jsonlint.com/ or
https://extendsclass.com/json-validator.html).

Using json.org/json.r

json-str: {{"menu": {
 "id": "file",
 "string": "File:",
 "number": -3,
 "boolean": true,
 "boolean2": false,
 "null": null,
 "array": [1, 0.13, null, true, false, "\t\r\n"],
 "empty-string": ""
 }
}}

res: json-to-rebol json-str
js: rebol-to-json res

json-to-rebol Result:

make object! [
 menu: make object! [
 id: "file"
 string: "File:"
 number: -3
 boolean: true
 boolean2: false
 null: none
 array: [1 0.13 none true false "^-^M^/"]
 empty-string: ""
]
]

http://www.json.org/json.r
https://extendsclass.com/json-validator.html
https://jsonlint.com/
https://codebeautify.org/jsonvalidator
https://jsonformatter.org/
http://en.wikipedia.org/wiki/JSON

Keyboard macros
Show how to link user defined methods to user defined keys.

An example of this is the facility provided by emacs for key
bindings.

These key bindings may be application-specific or system-wide;
state which you have done.

; Application specific keyboard bindings using REBOL VID
; dialect. Implementation of the "Averageman" calculator --
; See http://www.atariarchives.org/bcc2/showpage.php?page=63 for details.

view layout [
 style btn button coal 46
 across

 display: h1 100 red maroon right "" return

; Key shortcuts are specified as character arguments to widget
; descriptions in the layout.

 btn "1" #"1" [set-face display "1"]
 btn "+" #"+" [set-face display ""]
 return

 pad 54
 btn "=" #"=" [set-face display "3"]

 pad 1x100 return
 text "(c) 1977 G. Beker"
]

Knuth shuffle
The Knuth shuffle (a.k.a. the Fisher-Yates shuffle) is an
algorithm for randomly shuffling the elements of an array.

Implement the Knuth shuffle for an integer array (or, if
possible, an array of any type).

Specification

Given an array items with indices ranging from 0 to last, the
algorithm can be defined as follows (pseudo-code):

http://en.wikipedia.org/wiki/Knuth_shuffle
http://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Bindings.html
http://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Bindings.html

for i from last downto 1 do:
 let j = random integer in range 0 ≤ j ≤ i
 swap items[i] with items[j]

Notes:

• It modifies the input array in-place. If that is
unreasonable in your programming language, you may amend
the algorithm to return the shuffled items as a new array
instead.

• The algorithm can also be amended to iterate from left to
right, if that is more convenient.

Test cases

Input array Possible output
arrays

[] []
[10] [10]

[10, 20] [10, 20]
[20, 10]

[10, 20, 30]

[10, 20, 30]
[10, 30, 20]
[20, 10, 30]
[20, 30, 10]
[30, 10, 20]
[30, 20, 10]

fisher-yates: func [b [block!] /local n i j k] [
 n: length? b: copy b
 i: n
 while [i > 1] [
 if i <> j: random i [
 error? set/any 'k pick b j
 change/only at b j pick b i
 change/only at b i get/any 'k
]
 i: i - 1
]
 b
]

Last Friday of each month
Write a program or a script that returns the date of the last
Fridays of each month of a given year.

The year may be given through any simple input method in your
language (command line, std in, etc).

The longer version:

leap-year?: function [year] [to-logic attempt [to-date reduce [29 2 year]]]

days-in-feb: function [year] [either leap-year? year [29] [28]]

days-in-month: function [month year] [
 do pick [31 (days-in-feb year) 31 30 31 30 31 31 30 31 30 31] month
]

last-day-of-month: function [month year] [
 to-date reduce [year month days-in-month month year]
]

last-weekday-of-month: function [weekday month year] [
 d: last-day-of-month month year
 while [d/weekday != weekday] [d/day: d/day - 1]
 d
]

last-friday-of-month: function [month year] [last-weekday-of-month 5 month
year]

year: to-integer input
repeat month 12 [print last-friday-of-month month year]

Output:

rebol last-fridays.reb <<< 2012
27-Jan-2012
24-Feb-2012
30-Mar-2012
27-Apr-2012
25-May-2012
29-Jun-2012
27-Jul-2012
31-Aug-2012
28-Sep-2012
26-Oct-2012
30-Nov-2012
28-Dec-2012

A shorter version:

last-fridays-of-year: function [year] [
 collect [
 repeat month 12 [
 d: to-date reduce [1 month year]
 d/month: d/month + 1 ; start of next month
 until [d/day: d/day - 1 d/weekday = 5] ; go backwards until
find a Friday
 keep d
]
]
]

foreach friday last-fridays-of-year to-integer input [print friday]

NB. See "Find the last Sunday of each month" Rosetta for
alternative (even more succinct) solution

Leap year
Determine whether a given year is a leap year in the Gregorian
calendar.

leap-year?: func [
 {Returns true if the specified year is a leap year; false otherwise.}
 year [date! integer!]
 /local div?
][
 either date? year [year: year/year] [
 if negative? year [throw make error! join [script invalid-arg] year]
]
 ; The key numbers are 4, 100, and 400, combined as follows:
 ; 1) If the year is divisible by 4, it’s a leap year.
 ; 2) But, if the year is also divisible by 100, it’s not a leap year.
 ; 3) Double but, if the year is also divisible by 400, it is a leap
year.
 div?: func [n] [zero? year // n]
 to logic! any [all [div? 4 not div? 100] div? 400]
]

Mad Libs

Mad Libs is a phrasal template word game where one player prompts
another for a list of words to substitute for blanks in a story,
usually with funny results.

Write a program to create a Mad Libs like story.

The program should read an arbitrary multiline story from input.

The story will be terminated with a blank line.

Then, find each replacement to be made within the story, ask the
user for a word to replace it with, and make all the
replacements.

Stop when there are none left and print the final story.

The input should be an arbitrary story in the form:

<name> went for a walk in the park. <he or she>
found a <noun>. <name> decided to take it home.

Given this example, it should then ask for a name, a he or she
and a noun (<name> gets replaced both times with the same value).

t: {<name> went for a walk in the park. <he or she> found a <noun>. <name>
decided to take it home.}
view layout [a: area wrap t btn "Done" [x: a/text unview]]
parse x [any [to "<" copy b thru ">" (append w: [] b)] to end]
foreach i unique w [replace/all x i ask join i ": "] alert x

MD5
Encode a string using an MD5 algorithm. The algorithm can be
found on Wikipedia.

Optionally, validate your implementation by running all of the
test values in IETF RFC (1321) for MD5.

http://tools.ietf.org/html/rfc1321
http://en.wikipedia.org/wiki/Md5#Algorithm
http://en.wikipedia.org/wiki/Mad_Libs

Additionally, RFC 1321 provides more precise information on
the algorithm than the Wikipedia article.

Warning: MD5 has known weaknesses, including collisions and
forged signatures. Users may consider a stronger alternative
when doing production-grade cryptography, such as SHA-256 (from
the SHA-2 family), or the upcoming SHA-3.

If the solution on this page is a library solution, see
MD5/Implementation for an implementation from scratch.

>> checksum/method "The quick brown fox jumped over the lazy dog" 'md5
== #{08A008A01D498C404B0C30852B39D3B8}

Menu
Given a prompt and a list containing a number of strings of which
one is to be selected, create a function that:

• prints a textual menu formatted as an index value followed
by its corresponding string for each item in the list;

• prompts the user to enter a number;
• returns the string corresponding to the selected index

number.

The function should reject input that is not an integer or is out
of range by redisplaying the whole menu before asking again for a
number. The function should return an empty string if called with
an empty list.

For test purposes use the following four phrases in a list:

 fee fie
 huff and puff
 mirror mirror
 tick tock

This example is incorrect.

Details: The function should return an empty string if
called with an empty list. Please also check if this could
really used as a function aka subroutine.

https://en.wikipedia.org/wiki/Subroutine
https://rosettacode.org/wiki/MD5/Implementation
http://www.win.tue.nl/hashclash/rogue-ca/
http://tools.ietf.org/html/rfc6151
https://tools.ietf.org/html/rfc1321

choices: ["fee fie" "huff and puff" "mirror mirror" "tick tock"]
choice: ""

valid?: func [
 choices [block! list! series!]
 choice
][
 if error? try [choice: to-integer choice] [return false]
 all [0 < choice choice <= length? choices]
]

while [not valid? choices choice][
 repeat i length? choices [print [" " i ":" choices/:i]]
 choice: ask "Which is from the three pigs? "
]
print ["You chose:" pick choices to-integer choice]

Output:

 1 : fee fie
 2 : huff and puff
 3 : mirror mirror
 4 : tick tock
Which is from the three pigs? klf
 1 : fee fie
 2 : huff and puff
 3 : mirror mirror
 4 : tick tock
Which is from the three pigs? 5
 1 : fee fie
 2 : huff and puff
 3 : mirror mirror
 4 : tick tock
Which is from the three pigs? 2
You chose: huff and puff

Multiplication tables
Produce a formatted 12×12 multiplication table of the kind
memorized by rote when in primary (or elementary) school.

Only print the top half triangle of products.

size: 12

; Because of REBOL's GUI focus, it doesn't really do pictured output,
; so I roll my own. See Formatted_Numeric_Output for more
; comprehensive version:

pad: func [pad n][
 n: to-string n
 insert/dup n " " (pad - length? n)
 n
]
p3: func [v][pad 3 v] ; A shortcut, I hate to type...

--: has [x][repeat x size + 1 [prin "+---"] print "+"] ; Special chars OK.

.row: func [label y /local row x][
 row: reduce ["|" label "|"]
 repeat x size [append row reduce [either x < y [" "][p3 x * y] "|"]]
 print rejoin row
]

-- .row " x " 1 -- repeat y size [.row p3 y y] --

print rejoin [crlf "What about " size: 5 "?" crlf]
-- .row " x " 1 -- repeat y size [.row p3 y y] --

print rejoin [crlf "How about " size: 20 "?" crlf]
-- .row " x " 1 -- repeat y size [.row p3 y y] --

Output:

(only 12x12 shown):

+---+---+---+---+---+---+---+---+---+---+---+---+---+
| x | 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12|
+---+---+---+---+---+---+---+---+---+---+---+---+---+
1	1	2	3	4	5	6	7	8	9	10	11	12
2		4	6	8	10	12	14	16	18	20	22	24
3			9	12	15	18	21	24	27	30	33	36
4				16	20	24	28	32	36	40	44	48
5					25	30	35	40	45	50	55	60
6						36	42	48	54	60	66	72
7							49	56	63	70	77	84
8								64	72	80	88	96
9									81	90	99	108
10										100	110	120
11											121	132
12												144
+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mutual recursion
Two functions are said to be mutually recursive if the first
calls the second, and in turn the second calls the first.

Write two mutually recursive functions that compute members of
the Hofstadter Female and Male sequences defined as:

F (0) = 1 ; M (0) = 0

F (n) = n − M (F (n − 1)) , n > 0

M (n) = n − F (M (n − 1)) , n > 0.

(If a language does not allow for a solution using mutually
recursive functions then state this rather than give a solution
by other means).

f: func [
 "Female."
 n [integer!] "Value."
] [either 0 = n [1][n - m f n - 1]]

m: func [
 "Male."
 n [integer!] "Value."
] [either 0 = n [0][n - f m n - 1]]

fs: [] ms: [] for i 0 19 1 [append fs f i append ms m i]
print ["F:" mold fs crlf "M:" mold ms]

Output:

F: [1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12]
M: [0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12]

Number reversal game
Given a jumbled list of the numbers 1 to 9 that are definitely
not in ascending order.

Show the list, and then ask the player how many digits from the
left to reverse.

http://en.wikipedia.org/wiki/Hofstadter_sequence#Hofstadter_Female_and_Male_sequences

Reverse those digits, then ask again, until all the digits
end up in ascending order.

The score is the count of the reversals needed to attain the
ascending order.

Note: Assume the player's input does not need extra validation.

print "NUMBER REVERSAL GAME"

tries: 0
goal: [1 2 3 4 5 6 7 8 9]
random/seed now

until [
 jumble: random goal
 jumble != goal ; repeat in the unlikely case that jumble isn't jumbled
]

while [jumble != goal] [
 prin jumble
 prin " How many to flip? "
 flip-index: to-integer input ; no validation!
 reverse/part jumble flip-index
 tries: tries + 1
]

print rejoin ["You took " tries " attempts."]

Perfect numbers
Write a function which says whether a number is perfect.

A perfect number is a positive integer that is the sum of its
proper positive divisors excluding the number itself.

Equivalently, a perfect number is a number that is half the sum
of all of its positive divisors (including itself).

http://en.wikipedia.org/wiki/Perfect_numbers

Note: The faster Lucas-Lehmer test is used to find primes

of the form 2n-1, all known perfect numbers can be derived

from these primes using the formula (2n - 1) × 2n - 1.

It is not known if there are any odd perfect numbers (any that

exist are larger than 102000).

The number of known perfect numbers is 50 (as of
September, 2018), and the largest known perfect number contains
over 46 million decimal digits.

perfect?: func [n [integer!] /local sum] [
 sum: 0
 repeat i (n - 1) [
 if zero? remainder n i [sum: sum + i]
]
 sum = n
]

Primality by trial division
Write a boolean function that tells whether a given integer is
prime.

Remember that 1 and all non-positive numbers are not prime.

Use trial division.

Even numbers over two may be eliminated right away.

A loop from 3 to √ n will suffice, but other loops are
allowed.

prime?: func [n] [
 case [
 n = 2 [true]
 n <= 1 or (n // 2 = 0) [false]
 true [
 for i 3 round square-root n 2 [if n // i = 0 [return false]]
 true]
]
]

repeat i 100 [print [i prime? i]]

https://rosettacode.org/wiki/Lucas-Lehmer_test

Queue/Definition
Implement a FIFO queue.

Elements are added at one side and popped from the other in the
order of insertion.

Operations:

• push (aka enqueue) - add element
• pop (aka dequeue) - pop first element
• empty - return truth value when empty

Errors:

• handle the error of trying to pop from an empty queue
(behavior depends on the language and platform)

; Define fifo class:

fifo: make object! [
 queue: copy []
 push: func [x][append queue x]
 pop: func [/local x][; Make 'x' local so it won't pollute global
namespace.
 if empty [return none]
 x: first queue remove queue x]
 empty: does [empty? queue]
]

; Create and populate a FIFO:

q: make fifo []
q/push 'a
q/push 2
q/push USD$12.34 ; Did I mention that REBOL has 'money!'
datatype?
q/push [Athos Porthos Aramis] ; List elements pushed on one by one.
q/push [[Huey Dewey Lewey]] ; This list is preserved as a list.

; Dump it out, with narrative:

print rejoin ["Queue is " either q/empty [""]["not "] "empty."]
while [not q/empty][print [" " q/pop]]
print rejoin ["Queue is " either q/empty [""]["not "] "empty."]
print ["Trying to pop an empty queue yields:" q/pop]

Output:

Queue is not empty.
 a
 2
 USD$12.34
 Athos
 Porthos
 Aramis
 Huey Dewey Lewey
Queue is empty.
Trying to pop an empty queue yields: none

Quine
A Quine is a self-referential program that can, without any
external access, output its own source.

It is named after the philosopher and logician who studied self-
reference and quoting in natural language, as for example in the
paradox "'Yields falsehood when preceded by its quotation' yields
falsehood when preceded by its quotation."

"Source" has one of two meanings. It can refer to the text-based
program source. For languages in which program source is
represented as a data structure, "source" may refer to the data
structure: quines in these languages fall into two categories:
programs which print a textual representation of themselves, or
expressions which evaluate to a data structure which is
equivalent to that expression.

The usual way to code a Quine works similarly to this paradox:
The program consists of two identical parts, once as plain code
and once quoted in some way (for example, as a character string,
or a literal data structure). The plain code then accesses the
quoted code and prints it out twice, once unquoted and once with
the proper quotation marks added. Often, the plain code and the
quoted code have to be nested.

Write a program that outputs its own source code in this way. If
the language allows it, you may add a variant that accesses the
code directly. You are not allowed to read any external files
with the source code. The program should also contain some sort

http://en.wikipedia.org/wiki/Willard_Van_Orman_Quine
http://en.wikipedia.org/wiki/Quine_(computing)

of self-reference, so constant expressions which return their own
value which some top-level interpreter will print out. Empty
programs producing no output are not allowed.

There are several difficulties that one runs into when writing a
quine, mostly dealing with quoting:

• Part of the code usually needs to be stored as a string or
structural literal in the language, which needs to be
quoted somehow. However, including quotation marks in the
string literal itself would be troublesome because it
requires them to be escaped, which then necessitates the
escaping character (e.g. a backslash) in the string, which
itself usually needs to be escaped, and so on.

• Some languages have a function for getting the "source
code representation" of a string (i.e. adds quotation
marks, etc.); in these languages, this can be used to
circumvent the quoting problem.

• Another solution is to construct the quote character
from its character code, without having to write the
quote character itself. Then the character is inserted
into the string at the appropriate places. The ASCII
code for double-quote is 34, and for single-quote is
39.

• Newlines in the program may have to be reproduced as
newlines in the string, which usually requires some kind of
escape sequence (e.g. "\n"). This causes the same problem
as above, where the escaping character needs to itself be
escaped, etc.

• If the language has a way of getting the "source code
representation", it usually handles the escaping of
characters, so this is not a problem.

• Some languages allow you to have a string literal that
spans multiple lines, which embeds the newlines into
the string without escaping.

• Write the entire program on one line, for free-form
languages (as you can see for some of the solutions
here, they run off the edge of the screen), thus

https://rosettacode.org/wiki/Character_code

removing the need for newlines. However, this may be
unacceptable as some languages require a newline at
the end of the file; and otherwise it is still
generally good style to have a newline at the end of a
file. (The task is not clear on whether a newline is
required at the end of the file.) Some languages have
a print statement that appends a newline; which solves
the newline-at-the-end issue; but others do not.

rebol [] q: [print ["rebol [] q:" mold q "do q"]] do q

Regular expressions
Task

• match a string against a regular expression
• substitute part of a string using a regular

expression

string: "This is a string."

; REBOL doesn't use a conventional Perl-compatible regular expression
; syntax. Instead, it uses a variant Parsing Expression Grammar with
; the 'parse' function. It's also not limited to just strings. You can
; define complex grammars that actually parse and execute program
; files.

; Here, I provide a rule to 'parse' that specifies searching through
; the string until "string." is found, then the end of the string. If
; the subject string satisfies the rule, the expression will be true.

if parse string [thru "string." end] [
 print "Subject ends with 'string.'"]

; For replacement, I take advantage of the ability to call arbitrary
; code when a pattern is matched -- everything in the parens will be
; executed when 'to " a "' is satisfied. This marks the current string
; location, then removes the offending word and inserts the replacement.

parse string [
 to " a " ; Jump to target.
 mark: (
 remove/part mark 3 ; Remove target.
 mark: insert mark " another " ; Insert replacement.
)
 :mark ; Pick up where I left off.
]

print [crlf "Parse replacement:" string]

; For what it's worth, the above operation is more conveniently done
; with the 'replace' function:

replace string " another " " a " ; Change string back.
print [crlf "Replacement:" string]

Output:

Subject ends with 'string.'

Parse replacement: This is another string.

Replacement: This is a string.

Remove duplicate elements
Given an Array, derive a sequence of elements in which all
duplicates are removed.

There are basically three approaches seen here:

• Put the elements into a hash table which does not allow

duplicates. The complexity is O(n) on average, and O(n2)
worst case. This approach requires a hash function for your
type (which is compatible with equality), either built-in
to your language, or provided by the user.

• Sort the elements and remove consecutive duplicate
elements. The complexity of the best sorting algorithms is
O(n log n). This approach requires that your type be
"comparable", i.e., have an ordering. Putting the elements
into a self-balancing binary search tree is a special case
of sorting.

• Go through the list, and for each element, check the rest
of the list to see if it appears again, and discard it if

it does. The complexity is O(n2). The up-shot is that this
always works on any type (provided that you can test for
equality).

print mold unique [1 $23.19 2 elbow 3 2 Bork 4 3 elbow 2 $23.19]
Output:

[1 $23.19 2 elbow 3 Bork 4]

Red
>> items: [1 "a" "c" 1 3 4 5 "c" 3 4 5]
>> unique items
== [1 "a" "c" 3 4 5]

Rot-13
Implement a rot-13 function (or procedure, class,
subroutine, or other "callable" object as appropriate to your
programming environment).

Optionally wrap this function in a utility program (like tr,
which acts like a common UNIX utility, performing a line-by-line
rot-13 encoding of every line of input contained in each file
listed on its command line, or (if no filenames are passed
thereon) acting as a filter on its "standard input."

(A number of UNIX scripting languages and utilities, such as
awk and sed either default to processing files in this way
or have command line switches or modules to easily implement
these wrapper semantics, e.g., Perl and Python).

The rot-13 encoding is commonly known from the early days of
Usenet "Netnews" as a way of obfuscating text to prevent casual
reading of spoiler or potentially offensive material.

Many news reader and mail user agent programs have built-in rot-
13 encoder/decoders or have the ability to feed a message through
any external utility script for performing this (or other)
actions.

The definition of the rot-13 function is to simply replace every
letter of the ASCII alphabet with the letter which is "rotated"
13 characters "around" the 26 letter alphabet from its normal
cardinal position (wrapping around from z to a as
necessary).

http://en.wikipedia.org/wiki/Spoiler_(media)
https://rosettacode.org/wiki/Python
https://rosettacode.org/wiki/Perl
https://rosettacode.org/wiki/UNIX
https://rosettacode.org/wiki/Category:Tr
https://rosettacode.org/wiki/Category:Red

Thus the letters abc become nop and so on.

Technically rot-13 is a "mono-alphabetic substitution cipher"
with a trivial "key".

A proper implementation should work on upper and lower case
letters, preserve case, and pass all non-alphabetic characters in
the input stream through without alteration.

; Test data has upper and lower case characters as well as characters
; that should not be transformed, like numbers, spaces and symbols.

text: "This is a 28-character test!"

print "Using cipher table:"

; I build a set of correspondence lists here. 'x' is the letters from
; A-Z, in both upper and lowercase form. Note that REBOL can iterate
; directly over the alphabetic character sequence in the for loop. 'y'
; is the cipher form, 'x' rotated by 26 characters (remember, I have
; the lower and uppercase forms together). 'r' holds the final result,
; built as I iterate across the 'text' string. I search for the
; current character in the plaintext list ('x'), if I find it, I get
; the corresponding character from the ciphertext list
; ('y'). Otherwise, I pass the character through untransformed, then
; return the final string.

rot-13: func [
 "Encrypt or decrypt rot-13 with tables."
 text [string!] "Text to en/decrypt."
 /local x y r i c
] [
 x: copy "" for i #"a" #"z" 1 [append x rejoin [i uppercase i]]
 y: rejoin [copy skip x 26 copy/part x 26]
 r: copy ""

 repeat i text [append r either c: find/case x i [y/(index? c)][i]]
 r
]

; Note that I am setting the 'text' variable to the result of rot-13
; so I can reuse it again on the next call. The rot-13 algorithm is
; reversible, so I can just run it again without modification to decrypt.

print [" Encrypted:" text: rot-13 text]
print [" Decrypted:" text: rot-13 text]

print "Using parse:"

clamp: func [
 "Contain a value within two enclosing values. Wraps if necessary."
 x v y
][
 x: to-integer x v: to-integer v y: to-integer y
 case [v < x [y - v] v > y [v - y + x - 1] true v]
]

; I'm using REBOL's 'parse' word here. I set up character sets for
; upper and lower-case letters, then let parse walk across the
; text. It looks for matches to upper-case letters, then lower-case,
; then skips to the next one if it can't find either. If a matching
; character is found, it's mathematically incremented by 13 and
; clamped to the appropriate character range. parse changes the
; character in place in the string, hence this is a destructive
; operation.

rot-13: func [
 "Encrypt or decrypt rot-13 with parse."
 text [string!] "Text to en/decrypt. Note: Destructive!"
] [
 u: charset [#"A" - #"Z"]
 l: charset [#"a" - #"z"]

 parse text [some [
 i: ; Current position.
 u (i/1: to-char clamp #"A" i/1 + 13 #"Z") | ; Upper case.
 l (i/1: to-char clamp #"a" i/1 + 13 #"z") | ; Lower case.
 skip]] ; Ignore others.
 text
]

; As you see, I don't need to re-assign 'text' anymore.

print [" Encrypted:" rot-13 text]
print [" Decrypted:" rot-13 text]

Output:

Using cipher table:
 Encrypted: Guvf vf n 28-punenpgre grfg!
 Decrypted: This is a 28-character test!
Using parse:
 Encrypted: Guvf vf n 28-punenpgre grfg!
 Decrypted: This is a 28-character test!

Runtime evaluation/In an
environment
Given a program in the language (as a string or AST) with a free
variable named x (or another name if that is not valid syntax),
evaluate it with x bound to a provided value, then evaluate it
again with x bound to another provided value, then subtract the
result of the first from the second and return or print it.

Do so in a way which:

• does not involve string manipulation of the input source
code

• is plausibly extensible to a runtime-chosen set of bindings
rather than just x

• does not make x a global variable

or note that these are impossible.

prog: [x * 2]
fn: func [x] [do bind prog 'x]
a: fn 2
b: fn 4
subtract b a

Result:

4

Simple database
Write a simple tool to track a small set of data.

The tool should have a command-line interface to enter at least
two different values.

The entered data should be stored in a structured format and
saved to disk.

It does not matter what kind of data is being tracked. It could
be a collection (CDs, coins, baseball cards, books), a diary, an

electronic organizer (birthdays/anniversaries/phone
numbers/addresses), etc.

You should track the following details:

• A description of the item. (e.g., title, name)
• A category or tag (genre, topic, relationship such as

“friend” or “family”)
• A date (either the date when the entry was made or some

other date that is meaningful, like the birthday); the date
may be generated or entered manually

• Other optional fields

The command should support the following Command-line arguments
to run:

• Add a new entry
• Print the latest entry
• Print the latest entry for each category
• Print all entries sorted by a date

The category may be realized as a tag or as structure (by making
all entries in that category subitems)

The file format on disk should be human readable, but it need not
be standardized. A natively available format that doesn't need
an external library is preferred. Avoid developing your own
format if you can use an already existing one. If there is no
existing format available, pick one of:

• JSON
• S-Expressions
• YAML
• others

write/append %rdb "" db: load %rdb
switch system/options/args/1 [
 "new" [write/append %rdb rejoin [now " " mold/only next
system/options/args newline]]

http://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
https://rosettacode.org/wiki/YAML
https://rosettacode.org/wiki/S-Expressions
https://rosettacode.org/wiki/JSON
https://rosettacode.org/wiki/Command-line_arguments

 "latest" [print copy/part tail sort/skip db 4 -4]
 "latestcat" [
 foreach cat unique extract at db 3 4 [
 t: copy []
 foreach [a b c d] db [if c = cat [append t reduce [a b c d]]]
 print copy/part tail sort/skip t 4 -4
]
]
 "sort" [probe sort/skip db 4]
]
halt

Simple windowed application
Create a window that has:

1. a label that says "There have been no clicks
yet"

2. a button that says "click me"

Upon clicking the button with the mouse, the label should change
and show the number of times the button has been clicked.

clicks: 0

; Simple GUI's in REBOL can be defined with 'layout', a
; special-purpose language (dialect, in REBOL-speak) for specifying
; interfaces. In the example below, I describe a gradient background
; with a text label and a button. The block in the button section
; details what should happen when it's clicked on -- increment the
; number of clicks and update the label text.

; The 'view' function paints the layout on the screen and listens for
; events.

view layout [
 backdrop effect [gradient 0x1 black coal]

 label: vtext "There have been no clicks yet."

 button maroon "click me" [
 clicks: clicks + 1
 set-face label reform ["clicks:" clicks]
]
]

Sleep
Write a program that does the following in this order:

• Input an amount of time to sleep in whatever units are most
natural for your language (milliseconds, seconds, ticks,
etc.). This unit should be noted in comments or in a
description.

• Print "Sleeping..."
• Sleep the main thread for the given amount of time.
• Print "Awake!"
• End.

naptime: to-integer ask "Please enter sleep time in seconds: "
print "Sleeping..."
wait naptime
print "Awake!"

Red
str-time: to integer! ask "Enter wait time " ;get user input , convert to
integer
print "waiting"
wait str-time ;Seconds
print "awake"

Sort stability
When sorting records in a table by a particular column or field,
a stable sort will always retain the relative order of records
that have the same key.

For example, in this table of countries and cities, a stable sort
on the second column, the cities, would keep the US Birmingham
above the UK Birmingham. (Although an unstable sort might, in
this case, place the US Birmingham above the UK Birmingham, a
stable sort routine would guarantee it).

UK London
US New York
US Birmingham
UK Birmingham

http://en.wikipedia.org/wiki/Stable_sort#Stability
https://rosettacode.org/wiki/Category:Red
https://rosettacode.org/wiki/Thread
https://rosettacode.org/wiki/Hello_world/Text

Similarly, stable sorting on just the first column would generate
“UK London” as the first item and “US Birmingham” as the last
item (since the order of the elements having the same first word
– “UK” or “US” – would be maintained).

1.Examine the documentation on any in-built sort routines
supplied by a language.

2.Indicate if an in-built routine is supplied
3.If supplied, indicate whether or not the in-built routine

is stable.

; REBOL's sort function is not stable by default. You need to use a custom
comparator to make it so.

blk: [
 [UK London]
 [US New-York]
 [US Birmingham]
 [UK Birmingham]
]
sort/compare blk func [a b] [either a/2 < b/2 [-1] [either a/2 > b/2 [1] [0]]]

; Note that you can also do a stable sort without nested blocks.
blk: [
 UK London
 US New-York
 US Birmingham
 UK Birmingham
]
sort/skip/compare blk 2 func [a b] [either a < b [-1] [either a > b [1] [0]]]

Sorting algorithms/Insertion
sort
An O(n2) sorting algorithm which moves elements one at a time
into the correct position. The algorithm consists of inserting
one element at a time into the previously sorted part of the
array, moving higher ranked elements up as necessary. To start
off, the first (or smallest, or any arbitrary) element of the
unsorted array is considered to be the sorted part.

Although insertion sort is an O(n2) algorithm, its simplicity,
low overhead, good locality of reference and efficiency make it a

https://rosettacode.org/wiki/O
https://rosettacode.org/wiki/O

good choice in two cases:
(i) small n,
(ii) as the final finishing-off algorithm for O(n logn)
algorithms such as mergesort and quicksort.

The algorithm is as follows (from wikipedia):

function insertionSort(array A)
 for i from 1 to length[A]-1 do
 value := A[i]
 j := i-1
 while j >= 0 and A[j] > value do
 A[j+1] := A[j]
 j := j-1
 done
 A[j+1] = value
 done

Writing the algorithm for integers will suffice.

; This program works with REBOL version R2 and R3, to make it work with Red
; change the word func to function
insertion-sort: func [
 a [block!]
 /local i [integer!] j [integer!] n [integer!]
 value [integer! string! date!]
][
 i: 2
 n: length? a

 while [i <= n][
 value: a/:i
 j: i
 while [all [1 < j
 value < a/(j - 1)]][

 a/:j: a/(j - 1)
 j: j - 1
]
 a/:j: value
 i: i + 1
]
 a
]

probe insertion-sort [4 2 1 6 9 3 8 7]

probe insertion-sort ["---Monday's Child Is Fair of Face (by Mother
Goose)---"
 "Monday's child is fair of face;"
 "Tuesday's child is full of grace;"

http://en.wikipedia.org/wiki/Insertion_sort#Algorithm
https://rosettacode.org/wiki/Quicksort
https://rosettacode.org/wiki/Merge_sort
https://rosettacode.org/wiki/O

 "Wednesday's child is full of woe;"
 "Thursday's child has far to go;"
 "Friday's child is loving and giving;"
 "Saturday's child works hard for a living;"
 "But the child that is born on the Sabbath day"
 "Is blithe and bonny, good and gay."]

; just by adding the date! type to the local variable value the same function
can sort dates.
probe insertion-sort [12-Jan-2015 11-Jan-2015 11-Jan-2016 12-Jan-2014]

Output:

[1 2 3 4 6 7 8 9]
[{---Monday's Child Is Fair of Face (by Mother Goose)---}
 "But the child that is born on the Sabbath day"
 "Friday's child is loving and giving;"
 "Is blithe and bonny, good and gay."
 "Monday's child is fair of face;"
 "Saturday's child works hard for a living;"
 "Thursday's child has far to go;"
 "Tuesday's child is full of grace;"
 "Wednesday's child is full of woe;"
]
[12-Jan-2014 11-Jan-2015 12-Jan-2015 11-Jan-2016]

Sorting algorithms/Merge sort
The merge sort is a recursive sort of order n*log(n).

It is notable for having a worst case and average complexity of

O(n*log(n)), and a best case complexity of O(n) (for
pre-sorted input).

The basic idea is to split the collection into smaller groups by
halving it until the groups only have one element or no elements
 (which are both entirely sorted groups).

Then merge the groups back together so that their elements are in
order.

This is how the algorithm gets its divide and conquer
description.

Write a function to sort a collection of integers using the merge
sort.

The merge sort algorithm comes in two parts:

 a sort function and
 a merge function

The functions in pseudocode look like this:

function mergesort(m)
 var list left, right, result
 if length(m) ≤ 1
 return m
 else
 var middle = length(m) / 2
 for each x in m up to middle - 1
 add x to left
 for each x in m at and after middle
 add x to right
 left = mergesort(left)
 right = mergesort(right)
 if last(left) ≤ first(right)
 append right to left
 return left
 result = merge(left, right)
 return result

function merge(left,right)
 var list result
 while length(left) > 0 and length(right) > 0
 if first(left) ≤ first(right)
 append first(left) to result
 left = rest(left)
 else
 append first(right) to result
 right = rest(right)
 if length(left) > 0
 append rest(left) to result
 if length(right) > 0
 append rest(right) to result
 return result

Note: better performance can be expected if, rather than

recursing until length(m) ≤ 1, an insertion sort is used
for length(m) smaller than some threshold larger than 1.

 However, this complicates the example code, so it is not shown
here.

msort: function [a compare] [msort-do merge] [
 if (length? a) < 2 [return a]
 ; define a recursive Msort-do function
 msort-do: function [a b l] [mid] [
 either l < 4 [
 if l = 3 [msort-do next b next a 2]
 merge a b 1 next b l - 1
] [
 mid: make integer! l / 2
 msort-do b a mid
 msort-do skip b mid skip a mid l - mid
 merge a b mid skip b mid l - mid
]
]
 ; function Merge is the key part of the algorithm
 merge: func [a b lb c lc] [
 until [
 either (compare first b first c) [
 change/only a first b
 b: next b
 a: next a
 zero? lb: lb - 1
] [
 change/only a first c
 c: next c
 a: next a
 zero? lc: lc - 1
]
]
 loop lb [
 change/only a first b
 b: next b
 a: next a
]
 loop lc [
 change/only a first c
 c: next c
 a: next a
]
]
 msort-do a copy a length? a
 a
]

Stack
A stack is a container of elements with last in, first out
access policy. Sometimes it also called LIFO.

The stack is accessed through its top.

The basic stack operations are:

• push stores a new element onto the stack top;
• pop returns the last pushed stack element, while

removing it from the stack;
• empty tests if the stack contains no elements.

Sometimes the last pushed stack element is made accessible for
immutable access (for read) or mutable access (for write):

• top (sometimes called peek to keep with the p theme)
returns the topmost element without modifying the stack.

Stacks allow a very simple hardware implementation.

They are common in almost all processors.

In programming, stacks are also very popular for their way (LIFO)
of resource management, usually memory.

Nested scopes of language objects are naturally implemented by a
stack (sometimes by multiple stacks).

This is a classical way to implement local variables of a re-
entrant or recursive subprogram. Stacks are also used to describe
a formal computational framework.

See stack machine.

Many algorithms in pattern matching, compiler construction (e.g.
recursive descent parsers), and machine learning (e.g. based on
tree traversal) have a natural representation in terms of stacks.

Create a stack supporting the basic operations: push, pop, empty.

stack: make object! [
 data: copy []

http://en.wikipedia.org/wiki/Tree_traversal
http://en.wikipedia.org/wiki/Recursive_descent
http://en.wikipedia.org/wiki/Stack_automaton

 push: func [x][append data x]
 pop: func [/local x][x: last data remove back tail data x]
 empty: does [empty? data]

 peek: does [last data]
]

; Teeny Tiny Test Suite

assert: func [code][print [either do code [" ok"]["FAIL"] mold code]]

print "Simple integers:"
s: make stack [] s/push 1 s/push 2 ; Initialize.

assert [2 = s/peek]
assert [2 = s/pop]
assert [1 = s/pop]
assert [s/empty]

print [lf "Symbolic data on stack:"]
v: make stack [data: [this is a test]] ; Initialize on instance.

assert ['test = v/peek]
assert ['test = v/pop]
assert ['a = v/pop]
assert [not v/empty]

Sample run:

Simple integers:
 ok [2 = s/peek]
 ok [2 = s/pop]
 ok [1 = s/pop]
 ok [s/empty]

Symbolic data on stack:
 ok ['test = v/peek]
 ok ['test = v/pop]
 ok ['a = v/pop]
 ok [not v/empty]

Stair-climbing puzzle
From Chung-Chieh Shan (LtU):

Your stair-climbing robot has a very simple low-level API: the
"step" function takes no argument and attempts to climb one step
as a side effect. Unfortunately, sometimes the attempt fails and

http://lambda-the-ultimate.org/node/1872

the robot clumsily falls one step instead. The "step" function
detects what happens and returns a boolean flag: true on success,
false on failure.

Write a function "step_up" that climbs one step up [from the
initial position] (by repeating "step" attempts if necessary).
Assume that the robot is not already at the top of the stairs,
and neither does it ever reach the bottom of the stairs. How
small can you make "step_up"? Can you avoid using variables (even
immutable ones) and numbers?

Here's a pseudo-code of a simple recursive solution without using
variables:

func step_up()
{
 if not step() {
 step_up();
 step_up();
 }
}

Inductive proof that step_up() steps up one step, if it
terminates:

• Base case (if the step() call returns true): it stepped up
one step. QED

• Inductive case (if the step() call returns false): Assume
that recursive calls to step_up() step up one step. It
stepped down one step (because step() returned false), but
now we step up two steps using two step_up() calls. QED

The second (tail) recursion above can be turned into an
iteration, as follows:

func step_up()
{
 while not step() {
 step_up();
 }
}

random/seed now

step: does [random/only reduce [yes no]]

; Iterative solution with symbol stack. No numbers, draws a nifty
; diagram of number of steps to go. This is intended more to
; demonstrate a correct solution:

step_up: func [/steps s] [
 either not steps [
 print "Starting up..."
 step_up/steps copy [|]
][
 while [not empty? s][
 print [" Steps left:" s]
 either step [remove s][append s '|]
]
]
]

step_up print ["Success!" crlf]

; Recursive solution. No numbers, no variables. "R" means a recover
; step, "+" means a step up.

step_upr: does [if not step [prin "R " step_upr prin "+ " step_upr]]

step_upr print ["Success!" crlf]

; Small recursive solution, no monitoring:

step_upt: does [if not step [step_upt step_upt]]

step_upt print "Success!"

Output:

Starting up...
 Steps left: |
 Steps left: | |
 Steps left: |
Success!

R R + R R R R R R R + + R + + + + + + R + R R + R + R + R + + + Success!

Success!

String interpolation (included)
Given a string and defined variables or values, string
interpolation is the replacement of defined character sequences
in the string by values or variable values.

For example, given an original string of "Mary had a X
lamb.", a value of "big", and if the language replaces X in
its interpolation routine, then the result of its
interpolation would be the string "Mary had a big lamb".

(Languages usually include an infrequently used character or
sequence of characters to indicate what is to be replaced
such as "%", or "#" rather than "X").

The task is to

1. Use your languages inbuilt string interpolation abilities
to interpolate a string missing the text "little" which is
held in a variable, to produce the output string "Mary had
a little lamb".

2.If possible, give links to further documentation on your
languages string interpolation features.

Note: The task is not to create a string interpolation routine, but to show a

language's built-in capability.

str: "Mary had a <%size%> lamb"
size: "little"
build-markup str

;REBOL3 also has the REWORD function
str: "Mary had a $size lamb"
reword str [size "little"]

Sum and product of an array
Compute the sum and product of an array of integers.

; Simple:

sum: func [a [block!] /local x] [x: 0 forall a [x: x + a/1] x]

product: func [a [block!] /local x] [x: 1 forall a [x: x * a/1] x]

http://en.wikipedia.org/wiki/String_literal#Variable_interpolation
http://en.wikipedia.org/wiki/String_literal#Variable_interpolation

; Way too fancy:

redux: func [
 "Applies an operation across an array to produce a reduced value."
 a [block!] "Array to operate on."
 op [word!] "Operation to perform."
 /init x "Initial value (default 0)."
][if not init [x: 0] forall a [x: do compose [x (op) (a/1)]] x]

rsum: func [a [block!]][redux a '+]

rproduct: func [a [block!]][redux/init a '* 1]

; Tests:

assert: func [code][print [either do code [" ok"]["FAIL"] mold code]]

print "Simple dedicated functions:"
assert [55 = sum [1 2 3 4 5 6 7 8 9 10]]
assert [3628800 = product [1 2 3 4 5 6 7 8 9 10]]

print [crlf "Fancy reducing function:"]
assert [55 = rsum [1 2 3 4 5 6 7 8 9 10]]
assert [3628800 = rproduct [1 2 3 4 5 6 7 8 9 10]]

Tokenize a string
Separate the string "Hello,How,Are,You,Today" by commas into an
array (or list) so that each element of it stores a different
word. Display the words to the 'user', in the simplest manner
possible, separated by a period. To simplify, you may display a
trailing period.

print ["Original:" original: "Hello,How,Are,You,Today"]
tokens: parse original ","
dotted: "" repeat i tokens [append dotted rejoin [i "."]]
print ["Dotted: " dotted]

Output:

 Original: Hello,How,Are,You,Today
 Dotted: Hello.How.Are.You.Today.

Red
str: "Hello,How,Are,You,Today"

https://rosettacode.org/wiki/Category:Red

>> tokens: split str ","
>> probe tokens
["Hello" "How" "Are" "You" "Today"]

>> periods: replace/all form tokens " " "." ;The word FORM converts the
list series to a string removing quotes.
>> print periods ;then REPLACE/ALL
spaces with period
Hello.How.Are.You.Today

Towers of Hanoi
Solve the Towers of Hanoi problem with recursion.

hanoi: func [
 {Begin moving the golden disks from one pole to the next.
 Note: when last disk moved, the world will end.}
 disks [integer!] "Number of discs on starting pole."
 /poles "Name poles."
 from to via
][
 if disks = 0 [return]
 if not poles [from: 'left to: 'middle via: 'right]

 hanoi/poles disks - 1 from via to
 print [from "->" to]
 hanoi/poles disks - 1 via to from
]

hanoi 4

Output:

left -> right
left -> middle
right -> middle
left -> right
middle -> left
middle -> right
left -> right
left -> middle
right -> middle
right -> left
middle -> left
right -> middle
left -> right
left -> middle
right -> middle

http://en.wikipedia.org/wiki/Towers_of_Hanoi

Web scraping
Create a program that downloads the time from this URL:
http://tycho.usno.navy.mil/cgi-bin/timer.pl and then prints the
current UTC time by extracting just the UTC time from the web
page's HTML.

If possible, only use libraries that come at no extra monetary
cost with the programming language and that are widely available
and popular such as CPAN for Perl or Boost for C++

; Notice that REBOL understands unquoted URL's:

service: http://tycho.usno.navy.mil/cgi-bin/timer.pl

; The 'read' function can read from any data scheme that REBOL knows
; about, which includes web URLs. NOTE: Depending on your security
; settings, REBOL may ask you for permission to contact the service.

html: read service

; I parse the HTML to find the first
 (note the unquoted HTML tag
; -- REBOL understands those too), then copy the current time from
; there to the "UTC" terminator.

; I have the "to end" in the parse rule so the parse will succeed.
; Not strictly necessary once I've got the time, but good practice.

parse html [thru
 copy current thru "UTC" to end]

print ["Current UTC time:" current]

https://rosettacode.org/wiki/Boost
http://www.cpan.org/
https://rosettacode.org/wiki/HTML
http://tycho.usno.navy.mil/cgi-bin/timer.pl

XML/Input
Given the following XML fragment, extract the list of student
names using whatever means desired. If the only viable method is
to use XPath, refer the reader to the task XML and XPath.

xml: {
<Students>
 <Student Name="April" Gender="F" DateOfBirth="1989-01-02" />
 <Student Name="Bob" Gender="M" DateOfBirth="1990-03-04" />
 <Student Name="Chad" Gender="M" DateOfBirth="1991-05-06" />
 <Student Name="Dave" Gender="M" DateOfBirth="1992-07-08">
 <Pet Type="dog" Name="Rover" />
 </Student>
 <Student DateOfBirth="1993-09-10" Gender="F" Name="Émily" />
</Students>
}

; REBOL has a simple built-in XML parser. It's not terribly fancy, but
; it's easy to use. It converts the XML into a nested list of blocks
; which can be accessed using standard REBOL path operators. The only
; annoying part (in this case) is that it does try to preserve
; whitespace, so some of the parsed elements are just things like line
; endings and whatnot, which I need to ignore.

; Once I have drilled down to the individual student records, I can
; just use the standard REBOL 'select' to locate the requested
; property.

data: parse-xml xml
students: data/3/1/3 ; Drill down to student records.
foreach student students [
 if block! = type? student [; Ignore whitespace elements.
 print select student/2 "Name"
]
]

Output:

April
Bob
Chad
Dave
Émily

https://rosettacode.org/wiki/XML_and_XPath

Y combinator
In strict functional programming and the lambda calculus,
functions (lambda expressions) don't have state and are only
allowed to refer to arguments of enclosing functions. This rules
out the usual definition of a recursive function wherein a
function is associated with the state of a variable and this
variable's state is used in the body of the function.

The Y combinator is itself a stateless function that, when
applied to another stateless function, returns a recursive
version of the function. The Y combinator is the simplest of the
class of such functions, called fixed-point combinators.

Define the stateless Y combinator and use it to compute
factorials and Fibonacci numbers from other stateless functions
or lambda expressions.

Y: closure [g] [do func [f] [f :f] closure [f] [g func [x] [do f :f :x]]]
usage example

fact*: closure [h] [func [n] [either n <= 1 [1] [n * h n - 1]]]
fact: Y :fact*

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Fixed-point_combinator
http://mvanier.livejournal.com/2897.html
http://en.wikipedia.org/wiki/lambda_calculus
http://en.wikipedia.org/wiki/Functional_programming

	100 Doors
	99 Bottles of Beer
	A+B
	Abstract Type
	Accumulator Factory
	Ackermann Function
	Add Variable to Class Instance at Runtime
	Align Columns
	Anonymous Recursion
	Callback to Array
	Arithmetic/Integer
	Array Concatenation
	Arrays
	Averages/Arithmetic Mean
	Averages/Median
	Classes
	Comma Quibbling
	Copy a String
	Date Format
	Date Manipulation
	Day of the Week
	Detect Division by Zero
	Determine if String is numeric
	Dot Product
	Dynamic Variable Names
	Echo Server
	Environment Variables
	Execute System Command
	Factorial
	Filter
	Last Sunday of each Month
	First-Class Functions
	FizzBuzz
	Flatten List
	Flow-Control Structures
	Formatted Numeric Output
	FTP
	Function Composition
	Generic Swap
	Greatest Common Divisor
	Greatest Element of List
	Hailstone Sequence
	Higher-Order Functions
	Horner Rule for Polynomial Evaluation
	Increment Numerical String
	Inheritance/Single
	Input Loop
	Interactive Programming
	Josephus Problem
	JSON
	Keyboard Macros
	Knuth Shuffle
	Last Friday of each Month
	Leap Year
	Mad Libs
	MD5
	Menu
	Multiplication Tables
	Mutual Recursion
	Number Reversal Game
	Perfect Numbers
	Primality by Trial Division
	Queue/Definition
	Quine
	Regular Expressions
	Remove Duplicate Elements
	Rot-13
	Runtime Evaluation/In Environment
	Simple Database
	Simple Window Application
	Sleep
	Sort Stability
	Insertion Sort
	Merge Sort
	Stack
	Stair-climbing Puzzle
	String Interpolation (included)
	Sum & Product of Array
	Tokenize String
	Towers of Hanoi
	Web Scraping
	XML/Input
	Y Combinator

